分割主鏡シミュレーター 第3版バージョン6 Result 1

岡山新技術望遠鏡グループ

平成 23 年 1 月 18 日

1	概要。	2
2	用語定義と特異ベクトル分類・表示 2.1 図による表示 2.1.1 特異ベクトル 2.1.2 ギャップセンサー配置 2.2 基準のギャップセンサー配置	2 2 2 2 3
3	線形性確認 3.1 ある並進・回転状態における変換行列の線形性 3.2 異なる並進・回転状態についての比較 3.2.1 変換行列の比較 3.2.2 並進・回転状態が異なる変換行列を適用した場合の影響	4 5 13 13
4	ギャップセンサー配置による特異値・ベクトルの変化 I — 素過程 2 4.1 ギャップセンサー配置のパターン 2 4.2 特異ベクトル・特異値への影響の評価 2 4.3 ギャップセンサー配置による特異値への影響 — セグメント間同一・辺毎単独 2 4.3.1 内環に対する配置 2 4.3.2 内周セグメント間に対する配置 — 中心線上 2 4.3.3 内周セグメント間に対する配置 — 中心線上 2 4.3.4 外周セグメント間に対する配置 — 中心線上 3 4.3.5 外周セグメント間に対する配置 — セグメント内 3	 !2 !2
	4.3.6 内外周セグメント間に対する配置 — 中心線上 5 4.3.7 内外周セグメント間に対する配置 — セグメント内 5 4.3.8 内・外周セグメント間に対する配置 — 中心線上 6 4.3.9 内・外周セグメント間に対する配置 — セグメント内 7 4.3.10 全体評価 7 4.3.10 全体評価 9 4.4.1 内周間ギャップセンサー配置による影響 9 4.4.2 外周間ギャップセンサー配置による影響 10 4.4.3 内周間ギャップセンサー配置による影響 11 4.4.4 内外間ギャップセンサー配置による影響 12	 53 53 57 73 90 94 95 95 15 25
	4.4.5 全体評価 13 4.5 ギャップセンサー配置による特異値への影響 — 1/3 対称形・辺毎 13	32 35

4.5.1	内環
4.5.2	内周間・外周間
4.5.3	全体評価

2

152

5 まとめ

1 概要

分割主鏡に取り付けるセグメント間ギャップセンサーについてのシミュレータが 3D 化されたが、行列解法を適用する 上ではいくつかの点で線形性近似を仮定している。この点について実際にシミュレータの出力により線形性近時の妥当 性を確認する。同時に、3D 化されたことで同一平面上での動きでなくなったセグメントの並進・回転についても、並進・ 回転の状況の変化による変換行列への影響を確認する。

また、シミュレータで求められるギャップセンサー配置とそれに対する特異ベクトル・特異値の分布の対応関係について、さまざまな配置を検討するための基礎的な検討資料として、個々のギャップセンサーを移動させたときの影響を調べる。

2 用語定義と特異ベクトル分類・表示

議論を簡単にするためにいくつかの用語を定義する。また、特異ベクトルと特異値の分布について議論しやすくする ために、特異ベクトルの特徴的な形について議論し、分類を定義する。

2.1 図による表示

2.1.1 特異ベクトル

特異ベクトルの表示はセグメント配置を模した円の中に、アクチュエータの位置に対応する場所に塗りつぶし円を並べることで表示する。塗りつぶし色¹は、プラスが青、マイナスが赤で、特記がない限り特異ベクトルの要素が 1/3 (もしくはそれ以上)になるところで完全な青・赤で表示される。図示のほかに、左上に対応する特異値の ID (大きい順に 1 から並べたもの)、左下に対応する特異値の値、右下に対応する特異値の値を最大特異値で割ったものを表記する。

2.1.2 ギャップセンサー配置

ギャップセンサー配置は主鏡を真上から見たセグメント配置の線上に表示する。なお、ギャップセンサーの定義位置の 深さは表示されない。

セグメント間の中点²に配置されたギャップセンサーは黒丸で、セグメント間中点から外れたギャップセンサーは白抜 き丸で表示される。ギャップセンサーの場所に対応するセグメント間中点を明示し、かつどの程度中点から離れているか を示すために、対応するセグメント間中点より線を引いて強調している。線が実線の場合は 75mm 以上離れて定義され ているギャップセンサーを示し、線の長さは 1 倍表示、線が点線の場合は 75mm 以内のギャップセンサーで 10 倍の長さ の線で強調されている。

¹特異ベクトルは、アクチュエータ空間での正規直交ベクトル系として記述されるため、現実には反転しても

²シミュレータの仕様書における定義での中点であり、セグメント端から 1-2mm 程度外に離れたところに相当。セグメントを 2D に並べたときの 中点で定義されているため、3D における中点ではないことに注意。

2.2 基準のギャップセンサー配置

ギャップセンサー配置を変更したことによる特異ベクトルの変化について、その比較対象となる基準(もしくは基本形の)ギャップセンサー配置を定義する。

セグメントの配置は中心軸に対して回転対象であるため、基準ギャップセンサー配置も対称形となるように定義する。 よって、全てのセグメント間の辺において辺上の中点もしくは 1/3 点にギャップセンサーが配置されているような状態(図 1)を基準のギャップセンサー配置とする。このとき、セグメントの配置とギャップセンサーの配置の両方が中心軸に対し て回転対称³であるので、その配置から求められる特異ベクトルも対称形であると類推でき分布を考えるときのベースと して利用しやすいと考えられる。

図 1: 基準ギャップセンサー配置

このギャップセンサー配置に対して、57個の特異ベクトルは図2,3のようになる。

これらに対して、極座標における直交多項式系である Zernike 多項式による分布 (図 4) のどれに近いかを判別する。 Zernike 多項式は光学系における収差のモードを示すためにも利用されている極座標での多項式系であり、セグメント配置は中心軸周りの回転対称であるため、形式として類似性がある。

各 Zernike のモードとその収差での呼び名、基準における特異ベクトル分布のうちのどれに近いかをまとめたものが、 表1である。なお、内環を入れてセグメントが3周分しかないことから、大きなnのZernike モードに対応する特異ベクトルの分布は発生しにくいといえる。

j	п	т	モード名	ID	備考
1	0	0	Piston	57	

³内周セグメントの数6の因数である2,3,6のそれぞれの次数において回転対称となる。

j	n	т	モード名	ID	備考
2	1	1	Tilt	56	
3	1	-1	Tilt	55	
4	2	0	Defocus	54	
5	2	2	Astig	52	
6	2	-2	Astig	51	
7	3	1	Coma	48	
8	3	-1	Coma	47	
9	4	0	Sphere	50	
10	3	3	AstigTri 0	49	
11	3	-3	AstigTri 30	53	
12	4	2		-	
13	4	-2		-	
14	5	1	Coma5	_	
15	5	-1	Coma5	-	

表 1: Zernike モードとの対応

3 線形性確認

アクチュエータ制御量からギャップセンサー読み出し値への変換行列とその SVD による逆行列による取り扱いを行う ためには、どのようなアクチュエータの制御量であっても同じ変換係数でギャップセンサー読み出し値が導出されなけれ ばならない。また、セグメントの並進・回転が加わった場合についてもこの同じ変換行列が適用できるかどうかが重要 であり、想定されうる並進・回転量において近似的に同じ変換行列が適用できなければ、異なる並進・回転量ごとに変 換行列を用意しておく必要があることになり、同時に並進・回転の状態を把握する必要があるともいえる。

これらの点について確認するため、あるアクチュエータ駆動量で作成した変換行列に対し、次のようなパターンのア クチュエータ駆動量に対応する変換行列で求められたギャップセンサー読み出し量と変換行列を求める際と同じ方法で求 めたギャップセンサー読み出し量の差を計算することにした。二つの読み出し量同士の差の評価については、単純平均・ 分散に意味は無い⁴ため、差の絶対値の平均を代表値として評価する⁵こととする。

- 内環の仮想分を含めて 57 本のアクチュエータを一つずつ駆動したとき
- 全アクチュエータを同じ量駆動したとき
- 全アクチュエータをランダム量駆動したとき

次に、セグメントの並進・回転の状態変化による影響について考える。シミュレータを 3D 化したことで、アクチュ エータを駆動していない (原点にいる) 場合でもギャップセンサーの測定方向が並進・回転運動を行う平面であるセグメン ト背面に対して傾いていた場合には読み出し値は変化する。これは、そもそも並進・回転による影響をギャップセンサー で測定できるようにするために、ギャップセンサーの取り付け方向をセグメント背面に対して傾けているためであり、こ の変化は発生すべき量である⁶。このため、セグメントが並進・回転している場合の変換行列の算出は、

変換行列の要素 = (アクチュエータを x 駆動した場合の読み出し値 – アクチュエータが原点での読み出し値) /x

⁴単純平均は系統的な誤差が発生せずにランダム的な差が載るような状況では0になるため指標としにくい。また、分散については駆動するアク チュエータに対応したギャップセンサーのみが値をもつため、駆動した数などに依存することになり指標としにくい。

⁵この場合、全ギャップセンサー数は高々100 個のオーダーであるため、一つだけ大きな差が発生した場合には 1-2 桁小さく評価される可能性はあ るが大半の状況下では平均的な代表値となりうる。また、一つのセグメントには 10 個弱のギャップセンサーが取り付けられているため、一つのアク チュエータを駆動した際に 10 個弱のギャップセンサーに影響が及ぶと考えると、この影響はより小さくなるはず。

⁶だたし、この逆の論理で言えば、ギャップセンサーの測定方向が従来と同じくセグメント背面に垂直である場合には並進・回転によるギャップセン サー読み出し値に変化がないはずであるが、実際には微少量の変化が発生する。これは、シミュレータを 3D 化したことによりセグメントの背面同士 が同じ平面をなすのではなくある角度を持って交差するようになったため、あるセグメントの並進・回転運動平面に対してギャップセンサーの対抗側 の測定方向は垂直でなくなったことによる。

と定義する。逆に、変換行列の検証の際には、バイアス値としてアクチュエータが原点での読み出し値を足し引きして 合わせる⁷。

3.1 ある並進・回転状態における変換行列の線形性

ギャップセンサー配置は基準の配置に固定して試験を行う。ギャップセンサーと変換行列についての条件は次のように する。

- z 方向は-40.0mm の場所
- ギャップセンサーの測定方向は鏡面に垂直方向
- 変換行列を作成する際のアクチュエータ駆動量は 1µm

セグメントの並進・回転については以下のような各条件について試験した。なお、簡単化のために全てのセグメント について同じ並進・回転の条件を加えている。

01 並進・回転なし

- 02 並進 (0.1mm, 0.0mm)、回転なし
- 03 並進 (0.0mm, 0.1mm)、回転なし
- 04 並進 (0.1mm, 0.1mm)、回転なし
- 05 並進なし、回転 0.1°
- 06 並進 (0.1mm, 0.0mm)、回転 0.1 °
- 07 並進 (0.0mm, 0.1mm)、回転 0.1°
- 08 並進 (0.1mm, 0.1mm)、回転 0.1°

試験で変化させるアクチュエータ駆動量のパターンについては以下の3通りの試験を行い、それぞれ表の結果が得られた。

- 内環の仮想分を含めて 57 本のアクチュエータを一つずつ 1mm 駆動:表2
- 全アクチュエータを同じ量駆動、1 19 µm を 1µm ごと: 表 3
- 内環以外のアクチュエータをランダム量駆動 固定値 1µm、ランダム値 2.5µm:表4

全てのアクチュエータを同じ量駆動した際の駆動量と差の間には、同じ並進・回転の状態であればほぼ線形の関係が みられており、ギャップセンサーの読み出し値に影響する二つのセグメント上の移動量⁸に対するアクチュエータを駆動 したときの影響の足し合わせだけではなく、その両方をパラメータに取るような関数の影響が見えていると考えること ができる。この影響は今回のような変換行列による表式ではカバーすることはできないが、アクチュエータを 1µm 駆動 した際に 3e-11mm と駆動量に対して 3e-8 のレベルであるために影響は近似的には無視することができる。

アクチュエータを1本ずつ駆動させたときの値は、内環を除く54アクチュエータに対して(オーダーで)ほぼ変わらな い値となっている。また、これについても非線形性は10⁻⁹のオーダーであり線形性近似は問題ないことが言える。

最後のランダム量駆動した場合の出力値について、アクチュエータを全て同じ値駆動したとき (2 番目) と比較すると 4~8 μ m 駆動したときの出力に近い。毎回計算されるランダム量の駆動であるので厳密な比較は無理ではあるものの、固 定値 1 μ m とランダム値 (uniform) 2.5 μ m で 2~4 μ m に相当するとすると倍程度大きくなっている⁹。実際の制御の際の状 況はこの 3 番目に近いと想定されるが、この場合でも非線形性はアクチュエータ駆動量の 10⁻⁷ のレベルであるので線形 性近似は問題ないと結論付けられる。

⁷実機では、このバイアス値分は鏡面の位相をそろえるための駆動量として利用されるので取得可能なデータに加算されていても問題ない。 ⁸センシング面中心点と対向板中心点の2点における移動量。

⁹²番目の際の検証でギャップセンサーが載る二つのセグメント両方をパラメータに取るような関数の影響を考えたときに、2番目ではその片向きだけが(しかもアクチュエータ駆動量に差は無いので小さい値で)影響したが、ここではランダムであるので両方の向きが影響すると思うと2倍…?

図 2: 基準における特異ベクトル分布 I

図 3: 基準における特異ベクトル分布 II

図 4: Zernike 多項式の形状

夕を駆動
 Ц
Ч
μ
Ř
Ĵ
₩
-
直指標
公
成
非線形
2:
₩Å

题動
Ø Ø
ì
Ĥ
Ч
\mathbb{H}
5
F
()
р
₩
標
竝
圁
厼
戓
形
線形
非線形
2: 非線形

33 B	01 8.33523e-10 4.08008e-10	02 5.31103e-10 4.0824e-10	03 2.965056 5.307664	e-10	04 e-10 3.16481e-10 e-10 4.07078e-10	04 05 5-10 3.16481e-10 5.62609e-10 5.10 4.07078e-10 6.65035e-10	04 05 06 e-10 3.16481e-10 5.62609e-10 9.76567e-11 e-10 4.07078e-10 6.65035e-10 3.47175e-10	04 05 06 07 5-10 3.16481e-10 5.62609e-10 9.76567e-11 3.62118e-10 5-10 4.07078e-10 5.65805e-10 3.47175e-10 2.87204e-10
<u>.</u>	4.08098e-10	4.0824e-10	5.30266	e-10	ie-10 4.07078e-10	ie-10 4.07078e-10 6.65925e-10	ie-10 4.07078e-10 6.65925e-10 3.47175e-10	ie-10 4.07078e-10 6.65925e-10 3.47175e-10 2.87204e-10
34	5.86073e-10 8 31360e 10	2.81948e-10 5 28078a 10	4.42536e-	10	10 1.38424e-10	10 1.38424e-10 3.42664e-10 10 2.15528c 10 5.64340c 10	10 1.38424e-10 3.42664e-10 3.42323e-10 10 2.155285 10 5.642405 10 0.852365 11	$10 1.38424e-10 3.42664e-10 3.42323e-10 4.42627e-10 \\ 10 2.15538e-10 5.54240e-10 0.852358e-11 2.57150e-10 \\ 10 2.15538e-10 5.54240e-10 0.852358e-11 2.55150e-10 \\ 10 2.15538e-10 5.54240e-10 0.852358e-11 2.55180e-10 \\ 10 2.1558e-10 5.54240e-10 0.852358e-11 2.55180e-10 \\ 10 2.1558e-10 5.5588e-10 5.5588e-10 \\ 10 2.1588e-10 5.5588e-10 5.5588e-10 \\ 10 2.1588e-10 5.5588e-10 5.5588e-10 \\ 10 5.5588e-10 5.5588e-10 5.5588e-10 \\ 10 5.5588e$
35 36	8.31369e-10 4.06744e-10	5.28078e-10 4.0688e-10	2.98585e-10 5.31022e-10		3.15528e-10 4.06857e-10	3.15528e-10 5.64349e-10 4.06857e-10 6.68407e-10	3.15528e-10 5.64349e-10 9.85336e-11 4.06857e-10 6.68407e-10 3.4744e-10	3.15528e-10 5.64349e-10 9.85336e-11 3.62159e-10 4.06857e-10 6.68407e-10 3.4744e-10 2.88013e-10
37	5.85112e-10	2.82021e-10	4.42697e-10		1.38074e-10	1.38074e-10 3.41785e-10	1.38074e-10 3.41785e-10 3.4271e-10	1.38074e-10 3.41785e-10 3.42271e-10 4.42558e-10
38	8.31202e-10	5.28374e-10	2.98687e-10		3.15589e-10	3.15589e-10 5.64042e-10	3.15589e-10 5.64042e-10 9.86517e-11	3.15589e-10 5.64042e-10 9.86517e-11 3.61085e-10
39	4.06578e-10	4.06253e-10	5.31124e-10	4	1.0664e-10	1.0664e-10 6.67942e-10	1.0664e-10 6.67942e-10 3.47175e-10	1.0664e-10 6.67942e-10 3.47175e-10 2.87341e-10
40	5.8616e-10	5.84838e-10	4.44661e-10	1.4	:0007e-10	:0007e-10 3.42498e-10	.0007e-10 3.42498e-10 3.41178e-10	.0007e-10 3.42498e-10 3.41178e-10 4.4219e-10
41	8.31064e-10	8.30829e-10	3.00819e-10	3.1(5857e-10	5857e-10 5.63912e-10	5857e-10 5.63912e-10 9.93628e-11	5857e-10 5.63912e-10 9.93628e-11 3.60034e-10
42	4.06111e-10	7.10628e-10	5.32456e-10	4.07	324e-10	324e-10 6.68408e-10	324e-10 6.68408e-10 3.47441e-10	324e-10 6.68408e-10 3.47441e-10 2.87788e-10
43	2.82192e-10	5.8491e-10	4.43331e-10	1.380	74e-10	74e-10 3.41785e-10	74e-10 3.41785e-10 3.42271e-10	74e-10 3.41785e-10 3.42271e-10 4.42753e-10
4	8.30373e-10	8.31069e-10	2.99954e-10	3.1622	3e-10	3e-10 5.63605e-10	3e-10 5.63605e-10 9.86523e-11	3e-10 5.63605e-10 9.86523e-11 3.61681e-10
t5	4.06578e-10	7.0851e-10	5.31758e-10	4.07078	8e-10	8e-10 6.67941e-10	se-10 6.67941e-10 3.47205e-10	8e-10 6.67941e-10 3.47205e-10 2.88199e-10
e	5.86073e-10	5.84838e-10	4.4234e-10	1.3822	8e-10	8e-10 3.42866e-10	8e-10 3.42866e-10 3.42599e-10	8e-10 3.42866e-10 3.42599e-10 4.42902e-10
Ľ.	8.31173e-10	8.31405e-10	2.9839e-10	3.1533	3e-10	3e-10 5.63912e-10	3e-10 5.63912e-10 9.9088e-11	3e-10 5.63912e-10 9.9088e-11 3.62238e-10
ø	4.06744e-10	7.0977e-10	5.31656e-10	4.074	19e-10	19e-10 6.67773e-10	19e-10 6.67773e-10 3.47519e-10	l9e-10 6.67773e-10 3.47519e-10 2.87934e-10
6	5.85804e-10	2.82216e-10	4.42589e-10	1.365	66e-10	66e-10 3.41987e-10	66e-10 3.41987e-10 3.42122e-10	66e-10 3.41987e-10 3.42122e-10 4.43553e-10
0	8.31036e-10	5.27516e-10	3.0007e-10	3.151	35e-10	35e-10 5.63611e-10	35e-10 5.63611e-10 9.86528e-11	35e-10 5.63611e-10 9.86528e-11 3.6056e-10
1	4.06578e-10	4.05591e-10	5.33249e-10	4.079	06e-10	06e-10 6.69331e-10	06e-10 6.69331e-10 3.45874e-10	06e-10 6.69331e-10 3.45874e-10 2.88031e-10
32	5.86073e-10	5.84838e-10	4.42536e-10	1.38_{2}	424e-10	124e-10 3.4267e-10	124e-10 3.4267e-10 3.42403e-10	124e-10 3.4267e-10 3.42403e-10 4.42823e-10
53	8.31173e-10	8.30772e-10	2.99219e-10	3.16]	162e-10	162e-10 5.63912e-10	162e-10 5.63912e-10 9.90883e-11	162e-10 5.63912e-10 9.90883e-11 3.62158e-10
54	4.06744e-10	7.09137e-10	5.31656e-10	4.072	94e-10	94e-10 6.68407e-10	.94e-10 6.68407e-10 3.47549e-10	.94e-10 6.68407e-10 3.47549e-10 2.88647e-10
55	1.99716e-12	1.10499e-12	2.04282e-12	1.95	2e-12	2e-12 1.28067e-12	2e-12 1.28067e-12 1.90616e-12	2e-12 1.28067e-12 1.90616e-12 1.54895e-12
26	1.99716e-12	1.1054e-12	1.95643e-12	2.0296	5e-12	5e-12 1.15908e-12	5e-12 1.15908e-12 1.99708e-12	5e-12 1.15908e-12 1.99708e-12 1.48491e-12
22	1.99705e-12	1.10514e-12	1.95631e-12	2.04650	5e-12	5e-12 1.18048e-12	5e-12 1.18048e-12 1.99707e-12	5e-12 1.18048e-12 1.99707e-12 1.72151e-12

に駆動
甸
Ľ
Π
นี
Чн
141
7
ì
-h
Ξ
П
Ŧ
$\overline{\mathcal{L}}$
R
뽿
ή <u>π</u>
冟
行
ŝ
5
臣
巡
÷
3:
表

08	-11 3.74435e-11	-11 7.52476e-11	-11 1.13421e-10	-11 1.51411e-10	-10 1.89581e-10	-10 2.27935e-10	-10 2.65374e-10	-10 3.03726e-10	-10 3.41719e-10	-10 3.79162e-10	-10 4.16967e-10	-10 4.54957e-10	-10 4.93129e-10	-10 5.31387e-10	-10 5.69653e-10	-10 6.06731e-10	-10 6.44898e-10	-10 6.83101e-10	-10 7.21059e-10
07	2.10569e-	4.24737e-	6.42586e-	8.56793e	1.07826e-	1.29973e-	1.50661e-	1.72625e-	1.94231e	2.15287e	2.36522e-	2.58487e-	2.80211e	3.02052e-	3.23839e-	3.44529e-	3.66308e-	3.88095e-	4.09514e
90	2.47322e-11	5.07377e-11	7.71064e-11	1.02567e-10	1.28753e-10	1.55641e-10	1.80765e-10	2.06952e-10	2.32594e-10	2.58781e-10	2.83878e-10	3.10005e-10	3.36253e-10	3.62621e-10	3.88778e-10	4.13722e-10	4.40273e-10	4.6628e-10	4.91919e-10
05	3.57819e-11	7.26508e-11	1.09705e-10	1.46392e-10	1.83474e-10	2.20864e-10	2.56823e-10	2.93874e-10	3.30565e-10	3.67435e-10	4.03639e-10	4.4045e-10	4.77866e-10	5.14735e-10	5.51789e-10	5.87749e-10	6.24982e-10	6.61854e-10	6.98724e-10
04	2.16307e-11	4.32609e-11	6.5619e-11	8.70648e-11	1.09423e-10	1.32148e-10	1.53592e-10	1.75223e-10	1.97035e-10	2.19394e-10	2.41205e-10	2.63017e-10	2.8501e-10	3.07005e-10	3.28818e-10	3.50449e-10	3.72986e-10	3.95343e-10	4.17339e-10
03	2.84156e-11	5.79233e-11	8.72465e-11	1.15661e-10	1.44802e-10	1.74677e-10	2.0309e-10	2.3296e-10	2.61554e-10	2.90881e-10	3.19659e-10	3.48622e-10	3.77764e-10	4.0709e-10	4.36775e-10	4.64829e-10	4.95061e-10	5.24387e-10	5.53164e-10
02	2.63721e-11	5.29597e-11	7.97319e-11	1.06504e-10	1.33271e-10	1.60039e-10	1.86807e-10	2.13579e-10	2.4047e-10	2.66937e-10	2.93521e-10	3.20655e-10	3.47424e-10	3.73832e-10	4.00783e-10	4.27553e-10	4.5414e-10	4.80726e-10	5.07679e-10
01	3.26682e-11	6.62502e-11	9.96482e-11	1.32866e-10	1.66264e-10	2.0039e-10	2.33967e-10	2.67156e-10	3.00039e-10	3.338e-10	3.67198e-10	4.00596e-10	4.34358e-10	4.67486e-10	5.00974e-10	5.34737e-10	5.67953e-10	6.01351e-10	6.34568e-10
mμ	-	7	ю	4	5	9	L	8	6	10	11	12	13	14	15	16	17	18	19

ム駆動
Ŕ
\mathcal{A}
ID.
16
Σ
ì
Ĥ
Ц
\mathbb{H}
5
Ŕ
乬
Ъ
卣
活
1
펎
彩
影
玉
4
表

08	1.25742e-10	1.5017e-10	1.41065e-10	2.01312e-10	1.32676e-10	2.36029e-10	1.32183e-10	1.16156e-10	1.84977e-10	2.23907e-10	1.97795e-10	1.55478e-10	1.58193e-10	1.6928e-10	1.53306e-10	2.15061e-10	1.56904e-10	1.64517e-10	1.34882e-10	
07	1.55374e-10	1.35877e-10	2.28714e-10	1.59803e-10	1.88152e-10	1.43936e-10	2.0365e-10	1.75526e-10	1.77465e-10	1.57871e-10	1.73749e-10	1.83519e-10	1.92038e-10	1.7652e-10	2.00664e-10	2.46365e-10	2.21089e-10	1.30172e-10	1.84879e-10	
90	1.66392e-10	1.20839e-10	1.72553e-10	1.52443e-10	1.94125e-10	2.11917e-10	1.62259e-10	1.78203e-10	2.06671e-10	1.93275e-10	1.48096e-10	2.02046e-10	1.38284e-10	1.28397e-10	1.34099e-10	1.53413e-10	1.95578e-10	1.85333e-10	1.03407e-10	
05	1.42482e-10	1.85737e-10	1.70155e-10	1.67484e-10	2.04628e-10	1.41501e-10	1.5636e-10	1.17539e-10	2.18955e-10	1.05682e-10	1.47961e-10	2.27297e-10	1.60675e-10	2.12637e-10	1.55034e-10	1.61315e-10	1.83334e-10	2.4451e-10	1.82469e-10	
04	1.5806e-10	1.26594e-10	1.99121e-10	1.99976e-10	1.9615e-10	1.83347e-10	1.46508e-10	1.39939e-10	2.59406e-10	1.75212e-10	1.35334e-10	2.01906e-10	1.71329e-10	1.87595e-10	1.39564e-10	2.27242e-10	1.64696e-10	1.07907e-10	1.33363e-10	
03	1.43666e-10	1.68531e-10	2.42544e-10	1.34297e-10	1.23546e-10	1.31057e-10	1.6936e-10	1.04998e-10	1.7117e-10	1.90722e-10	1.36558e-10	1.8293e-10	1.60417e-10	2.02653e-10	1.76807e-10	1.66096e-10	2.428e-10	2.02152e-10	1.09218e-10	
02	1.74412e-10	1.83336e-10	2.05803e-10	1.83592e-10	1.85262e-10	1.64443e-10	1.813e-10	1.61454e-10	1.97623e-10	1.125e-10	2.10011e-10	2.04261e-10	1.55227e-10	1.59073e-10	1.31385e-10	1.26398e-10	1.49506e-10	1.5269e-10	1.92568e-10	
01	1.44367e-10	1.60795e-10	1.97567e-10	1.56408e-10	1.58726e-10	1.7515e-10	1.63482e-10	1.66317e-10	1.40507e-10	1.04458e-10	1.11273e-10	2.3063e-10	1.6028e-10	2.81308e-10	2.19847e-10	1.46796e-10	2.28502e-10	1.74341e-10	1.82823e-10	
ID	1	0	ю	4	5	9	٢	8	6	10	11	12	13	14	15	16	17	18	19	

3.2 異なる並進・回転状態についての比較

異なる並進・回転状態についての比較には二つあり、一つ目には作成された変換行列の比較と、二つ目はある状態に おいて作成した変換行列を利用して別な状態での線形性確認となる。

3.2.1 変換行列の比較

異なる並進・回転状態についての変換行列の比較について、前節での各条件に対する特異値を並べたものが表5となる。表中の特異値の変化は、1~52までは0.1%以下と微小変化しかしておらず、53,54についても並進だけならば1%程度と変化は大きくない。逆に、セグメントに0.1°の回転が加わると曲率モードの特異値は5割変化するともいえる。ただし、曲率モードをかなり弱くしか抑えられていない標準ギャップセンサー配置での結果であるため、より強く曲率モードを把握できるようなギャップセンサー配置をとった場合に改善する可能性は残されている¹⁰。

特異ベクトルの比較については、基準ギャップセンサー配置図 2,3 に対して、最も大きく動いているモードである並進・回転モード 08 の図 5,6 を比較しても明らかに変化しているという様子はない。

ID	(01)	02	03	04	05	06	07	08
1	3.5124	0.003	0.007	0.012	0.062	0.066	0.07	0.074
2	3.49277	0	-0.002	-0.002	-0.003	-0.003	-0.005	-0.005
3	3.49277	0	-0.002	-0.002	-0.003	-0.003	-0.005	-0.005
4	3.34678	-0.002	-0.011	-0.014	-0.054	-0.057	-0.065	-0.068
5	3.34678	-0.002	-0.011	-0.014	-0.054	-0.057	-0.065	-0.068
6	3.16786	-0.002	-0.017	-0.019	-0.059	-0.062	-0.077	-0.079
7	3.16429	-0.001	-0.005	-0.006	-0.023	-0.026	-0.028	-0.031
8	3.15096	0.002	0.006	0.008	0.041	0.045	0.047	0.051
9	3.0943	0.001	0.006	0.007	0.036	0.038	0.043	0.044
10	3.0943	0.001	0.006	0.007	0.036	0.038	0.043	0.044
11	2.9725	-0.006	-0.008	-0.015	-0.109	-0.116	-0.118	-0.125
12	2.90303	0	0.004	0.005	0.013	0.014	0.018	0.018
13	2.90303	0	0.004	0.005	0.013	0.014	0.018	0.018
14	2.88329	0.002	0.004	0.006	0.031	0.034	0.036	0.038
15	2.88329	0.002	0.004	0.006	0.031	0.034	0.036	0.038
16	2.75805	-0.004	-0.017	-0.021	-0.101	-0.106	-0.118	-0.122
17	2.75805	-0.004	-0.017	-0.021	-0.101	-0.106	-0.118	-0.122
18	2.72298	-0.001	-0.003	-0.005	-0.037	-0.039	-0.041	-0.043
19	2.62754	-0.004	-0.019	-0.023	-0.103	-0.107	-0.122	-0.127
20	2.62754	-0.004	-0.019	-0.023	-0.103	-0.107	-0.122	-0.127
21	2.57392	-0.003	-0.02	-0.023	-0.102	-0.106	-0.123	-0.127
22	2.37208	0.002	0.007	0.009	0.041	0.043	0.048	0.051
23	2.37208	0.002	0.007	0.009	0.041	0.043	0.048	0.051
24	2.28191	0.003	0.01	0.013	0.101	0.105	0.112	0.115
25	2.15158	0	-0.002	-0.001	0.007	0.008	0.005	0.005
26	2.00355	0	-0.004	-0.004	0.021	0.021	0.016	0.016
27	2.00355	0	-0.004	-0.004	0.021	0.021	0.016	0.016

表 5: 変換行列の特異値の比較 (並進・回転なしに対する変化 %)

¹⁰逆に特異値の比率での変化でなく絶対値としての変化で見るべきなのかもしれない。変化量の絶対値でみるとどの固有値でもオーダーではあまり 変わらない変化量となっている。

表 5: 変換行列の特異値の比較 (並進・回転なしに対する変化 %)

ID	(01)	02	03	04	05	06	07	08
28	1.88131	0	-0.005	-0.006	-0.01	-0.011	-0.016	-0.017
29	1.88131	0	-0.005	-0.006	-0.01	-0.011	-0.016	-0.017
30	1.8197	0	-0.013	-0.013	-0.007	-0.007	-0.02	-0.02
31	1.35162	0.008	0.025	0.034	0.218	0.227	0.244	0.253
32	1.35162	0.008	0.025	0.034	0.218	0.227	0.244	0.253
33	1.31897	0.006	0.009	0.015	0.163	0.17	0.172	0.179
34	1.31897	0.006	0.009	0.015	0.163	0.17	0.172	0.179
35	1.21342	0.009	0.029	0.038	0.255	0.264	0.285	0.294
36	1.19964	0.006	0.01	0.017	0.145	0.152	0.155	0.162
37	0.68835	-0.005	0.013	0.007	-0.073	-0.079	-0.059	-0.065
38	0.68835	-0.005	0.013	0.007	-0.073	-0.079	-0.059	-0.065
39	0.55848	-0.001	0.008	0.007	-0.036	-0.037	-0.028	-0.029
40	0.47374	0	0.013	0.013	-0.006	-0.006	0.006	0.006
41	0.47374	0	0.013	0.013	-0.006	-0.006	0.006	0.006
42	0.40989	0.001	0.031	0.033	0.012	0.014	0.044	0.046
43	0.22977	0.006	0.019	0.025	0.072	0.078	0.091	0.097
44	0.22977	0.006	0.019	0.025	0.072	0.078	0.091	0.097
45	0.2124	0.003	0.022	0.025	0.021	0.025	0.043	0.047
46	0.2124	0.003	0.022	0.025	0.021	0.025	0.043	0.047
47	0.1886	-0.001	0.008	0.007	-0.03	-0.031	-0.021	-0.022
48	0.1886	-0.001	0.008	0.007	-0.03	-0.031	-0.021	-0.022
49	0.1758	0.009	0.015	0.025	0.135	0.145	0.151	0.16
50	0.11354	-0.007	0.006	0	-0.141	-0.147	-0.136	-0.141
51	0.05534	-0.005	0.019	0.013	-0.099	-0.105	-0.08	-0.086
52	0.05534	-0.005	0.019	0.013	-0.099	-0.105	-0.08	-0.086
53	0.00219	0.597	1.845	2.443	-9.212	-8.534	-7.362	-6.685
54	0.00066	-1.585	0.453	-1.131	-42.256	-43.843	-41.805	-43.39

3.2.2 並進・回転状態が異なる変換行列を適用した場合の影響

ギャップセンサー配置や変換行列作成の条件は並進・回転状態が同じ場合での線形性試験のものと同じものとする。 セグメントの並進・回転についても同じく、以下のような各条件について試験した。なお、簡単化のために全てのセ グメントについて同じ並進・回転の条件を加えている。変換行列については、並進・回転なし (ID 01) の時の変換行列を 全てについて適用した。

- 01 並進・回転なし
- 02 並進 (0.1mm, 0.0mm)、回転なし
- 03 並進 (0.0mm, 0.1mm)、回転なし
- 04 並進 (0.1mm, 0.1mm)、回転なし
- 05 並進なし、回転 0.1。
- 06 並進 (0.1mm, 0.0mm)、回転 0.1 °
- 07 並進 (0.0mm, 0.1mm)、回転 0.1 °

08 並進 (0.1mm, 0.1mm)、回転 0.1°

試験で変化させるアクチュエータ駆動量のパターンについては以下の3通りの試験を行い、それぞれ表の結果が得ら れた。

なお、全てのセグメントを 0.1mm 並進させた場合に、全てのアクチュエータを原点に置いたときのギャップセンサーの 読み出し値、つまりギャップセンサーの検知方向が傾いている影響は (ギャップセンサーの配置場所にもよるが)5 ~ 10μm 程度となっている。つまり、並進量の 1/10 ~ 1/20 程度の影響が出る。

- 内環の仮想分を含めて 57 本のアクチュエータを一つずつ 1mm 駆動: 表 6
- 全アクチュエータを同じ量駆動、1 19 μm を 1μm ごと: 表 7
- 内環以外のアクチュエータをランダム量駆動 固定値 1µm、ランダム値 2.5µm:表8

並進・回転を合わせた変換行列を利用した場合と同じく、全てのアクチュエータを同じ量駆動した際の駆動量と差の 間には、同じ並進・回転の状態であればほぼ線形の関係がみられている。セグメントの並進と回転での影響の差を見る と、セグメントの並進の場合は非線形成分はオーダーで変化することなくほぼ同程度の値を示しているが、セグメント の回転のほうでは 30 倍程度大きな非線形成分を示している。これについての評価は微妙ではあるが、0.1° セグメントが 回転した場合にセグメントの4 隅での移動量が 1mm となり並進で動かしている 0.1mm に比べて 10 倍大きい¹¹ことの影 響が見えている可能性もある。この 0.1° 回転した場合の非線形成分はアクチュエータの駆動量に対して 10⁻⁷ のオーダー であるので、実際上は線形性近似は有効であるといえる。

アクチュエータを1本ずつ駆動させたときの非線形量は、内環を除く54アクチュエータに対して、リファレンスであ る並進・回転なしでの結果に比べて、並進では10^{4~5}程度、回転では10^{5~6}程度大きい。この並進・回転での変化の差は 上に述べたように0.1^o回転に相当する並進量が0.1mmに比べて一桁大きい可能性があるという点に符合するので、変 化割合が実際の移動距離量の関数になっている可能性はある。また、非線形量としてはアクチュエータの駆動量は1mm であるので、0.1mm 並進で駆動量比10⁻⁵のオーダーであるといえる。この比は、アクチュエータの最大駆動量1mmと ギャップセンサーの最小読み出しステップ10m¹²の比に近く、アクチュエータを最大駆動させた場合に影響が見られる 可能性は残る。

最後のランダム量駆動した場合の出力値について、並進・回転量が同じ変換行列を適用したときに比べて、並進の場合は 10³ 程度、回転の場合は 10⁴ 程度の非線形量になっている。前と同じく非線形量をアクチュエータ駆動量に対する 比で考えると、この場合は並進の場合で 10⁻⁴、回転の場合で 10⁻³ の非線形性が出現していることになり、アクチュエー タの最大駆動量 1mm とギャップセンサーの最小読み出しステップ 10nm の比よりも大きな非線形性が見られるといえる。 アクチュエータを最大駆動量程度になるまで駆動した場合には、変換行列の非線形性に注意する必要がある。

¹¹ギャップセンサー取り付け位置もセグメントの縁に相当する場所であるので、回転中心からの距離はセグメントの4隅と同程度といえる。 ¹²ただし、読み出し制御回路の段階で多数回平均することにより出力値におけるノイズとしてはこれよりも多少小さくなる。

図 5: 並進・回転モード 08 での特異ベクトル分布 I

図 6: 並進・回転モード 08 での特異ベクトル分布 II

表 6: 非線形成分値指標 — 1 本ずつアクチュエータを駆動

1		4			1		1	0
D	01	02	03	04	05	06	07	08
1	9.00209e-10	8.80541e-06	3.57463e-05	4.45508e-05	0.000208682	0.000217487	0.000234176	0.000242981
0	6.61598e-10	1.95088e-05	2.30876e-05	1.19871e-05	0.000160113	0.000155452	0.000172997	0.000168336
ю	8.80907e-10	2.55512e-05	1.79503e-05	3.82099e-05	0.000140148	0.000146191	0.000145249	0.000151292
4	9.01429e-10	8.80541e-06	3.57463e-05	4.45508e-05	0.000208682	0.000217487	0.000234176	0.000242981
5	6.58766e-10	1.95088e-05	2.30876e-05	1.19871e-05	0.000160113	0.000155452	0.000172997	0.000168336
9	8.79433e-10	2.55512e-05	1.79503e-05	3.82099e-05	0.000140148	0.000146191	0.000145249	0.000151292
٢	8.99099e-10	8.80541e-06	3.57463e-05	4.45508e-05	0.000208682	0.000217487	0.000234176	0.000242981
8	6.59148e-10	1.95088e-05	2.30876e-05	1.19871e-05	0.000160113	0.000155452	0.000172997	0.000168336
6	8.808e-10	2.55512e-05	1.79503e-05	3.82099e-05	0.000140148	0.000146191	0.000145249	0.000151292
10	8.99152e-10	8.80541e-06	3.57463e-05	4.45508e-05	0.000208682	0.000217487	0.000234176	0.000242981
11	6.59339e-10	1.95088e-05	2.30876e-05	1.19871e-05	0.000160113	0.000155452	0.000172997	0.000168336
12	8.81305e-10	2.55512e-05	1.79503e-05	3.82099e-05	0.000140148	0.000146191	0.000145249	0.000151292
13	9.00501e-10	8.80541e-06	3.57463e-05	4.45508e-05	0.000208682	0.000217487	0.000234176	0.000242981
14	6.60574e-10	1.95088e-05	2.30876e-05	1.19871e-05	0.000160113	0.000155452	0.000172997	0.000168336
15	8.82097e-10	2.55512e-05	1.79503e-05	3.82099e-05	0.000140148	0.000146191	0.000145249	0.000151292
16	9.0214e-10	8.80541e-06	3.57463e-05	4.45508e-05	0.000208682	0.000217487	0.000234176	0.000242981
17	6.60437e-10	1.95088e-05	2.30876e-05	1.19871e-05	0.000160113	0.000155452	0.000172997	0.000168336
18	8.81104e-10	2.55512e-05	1.79503e-05	3.82099e-05	0.000140148	0.000146191	0.000145249	0.000151292
19	5.85112e-10	5.40183e-06	2.58818e-05	3.1283e-05	0.000146973	0.000152374	0.000172798	0.0001782
20	8.31006e-10	1.29561e-05	1.62109e-05	6.72461e-06	0.000101849	8.88928e-05	0.00011806	0.000105104
21	4.06578e-10	1.83573e-05	9.67122e-06	2.80284e-05	8.46229e-05	9.63616e-05	8.88407e-05	0.000100579
22	5.86073e-10	1.08035e-05	2.98908e-05	3.52921e-05	0.000195902	0.000206705	0.00021633	0.000227133
23	8.33056e-10	1.53776e-05	1.82154e-05	1.21398e-05	0.000133157	0.000117779	0.000151372	0.000135995
24	4.08265e-10	2.07788e-05	1.16757e-05	3.24545e-05	0.000115976	0.000125293	0.000118189	0.000127506
25	5.85112e-10	5.40183e-06	2.58818e-05	3.1283e-05	0.000146973	0.000152374	0.000172798	0.0001782
26	8.31006e-10	1.29561e-05	1.62109e-05	6.72461e-06	0.000101849	8.88928e-05	0.00011806	0.000105104
27	4.06578e-10	1.83573e-05	9.67122e-06	2.80284e-05	8.46229e-05	9.63616e-05	8.88407e-05	0.000100579
28	5.86073e-10	1.08035e-05	2.98908e-05	3.52921e-05	0.000195902	0.000206705	0.00021633	0.000227133
29	8.31173e-10	1.53776e-05	1.82154e-05	1.21398e-05	0.000133157	0.000117779	0.000151372	0.000135995
30	4.06744e-10	2.07788e-05	1.16757e-05	3.24545e-05	0.000115976	0.000125293	0.000118189	0.000127506
31	5.85308e-10	5.40183e-06	2.58818e-05	3.1283e-05	0.000146973	0.000152374	0.000172798	0.0001782

表 6: 非線形成分値指標 — 1 本ずつアクチュエータを駆動

に駆動
恒
Ľ
П
ū
<u>л</u>
ויא ובו
10
$\tilde{\mathbf{v}}$
1
Н
Ч
Ŧ
5
R
틦
Σ
讏
石
Ę3
E.
獣
缆
₩
÷
表

μm	01	02	03	04	05	90	07	80
-1	3.26682e-11	3.31835e-11	3.32152e-11	3.37596e-11	9.90979e-10	9.91163e-10	9.90799e-10	9.90797e-10
7	6.62502e-11	6.62193e-11	6.67945e-11	6.75215e-11	1.98196e-09	1.98214e-09	1.9816e-09	1.9816e-09
\mathfrak{C}	9.96482e-11	9.98005e-11	1.00195e-10	1.00558e-10	2.97276e-09	2.97276e-09	2.97239e-09	2.97239e-09
4	1.32866e-10	1.33018e-10	1.33048e-10	1.33412e-10	3.96282e-09	3.96319e-09	3.96319e-09	3.96337e-09
5	1.66264e-10	1.66598e-10	1.66629e-10	1.66811e-10	4.95426e-09	4.95399e-09	4.95399e-09	4.95453e-09
9	2.0039e-10	2.00541e-10	2.00207e-10	2.00572e-10	5.94551e-09	5.94548e-09	5.94551e-09	5.94515e-09
٢	2.33967e-10	2.33756e-10	2.33788e-10	2.34151e-10	6.93667e-09	6.93667e-09	6.93631e-09	6.93631e-09
8	2.67156e-10	2.67338e-10	2.67733e-10	2.67916e-10	7.92747e-09	7.92747e-09	7.92729e-09	7.92729e-09
6	3.00039e-10	3.00313e-10	3.00768e-10	3.01495e-10	8.9179e-09	8.91809e-09	8.91754e-09	8.91754e-09
10	3.338e-10	3.33952e-10	3.34164e-10	3.34529e-10	9.90888e-09	9.90888e-09	9.90906e-09	9.90906e-09
11	3.67198e-10	3.67351e-10	3.67018e-10	3.67382e-10	1.08994e-08	1.08997e-08	1.09e-08	1.09002e-08
12	4.00596e-10	4.0093e-10	4.00779e-10	4.00962e-10	1.18905e-08	1.18905e-08	1.18907e-08	1.18912e-08
13	4.34358e-10	4.34511e-10	4.34359e-10	4.34722e-10	1.2882e-08	1.28816e-08	1.28814e-08	1.28813e-08
14	4.67486e-10	4.67366e-10	4.67759e-10	4.68124e-10	1.38726e-08	1.38726e-08	1.38726e-08	1.38725e-08
15	5.00974e-10	5.01127e-10	5.01522e-10	5.01704e-10	1.48634e-08	1.48634e-08	1.48638e-08	1.48638e-08
16	5.34737e-10	5.35071e-10	5.35099e-10	5.35463e-10	1.58542e-08	1.58544e-08	1.58546e-08	1.58546e-08
17	5.67953e-10	5.68106e-10	5.67955e-10	5.68683e-10	1.68452e-08	1.68452e-08	1.68457e-08	1.68457e-08
18	6.01351e-10	6.01504e-10	6.01352e-10	6.01716e-10	1.78362e-08	1.78362e-08	1.78365e-08	1.78366e-08
19	6.34568e-10	6.34902e-10	6.34934e-10	6.35116e-10	1.88272e-08	1.88275e-08	1.88273e-08	1.88275e-08

/ダム駆動
~
ID
Кh
A
ì
Ĥ
Ч
ж
7
F.
围形
νm
折
省
\mathcal{R}
戓
影
影
111 245
π
×.

Ð	01	02	03	04	05	90	07	08
-	1.74418e-10	3.02186e-07	2.9285e-07	3.12189e-07	1.6 <i>5</i> 776e-06	1.87333e-06	2.08769e-06	2.30407e-06
0	1.42051e-10	2.28388e-07	3.1027e-07	3.90108e-07	1.90362e-06	2.49315e-06	2.65255e-06	2.62472e-06
\mathfrak{C}	1.80216e-10	2.66512e-07	3.24375e-07	4.06392e-07	1.55e-06	1.97205e-06	1.60753e-06	2.48945e-06
4	1.72218e-10	2.9201e-07	2.86084e-07	3.91052e-07	1.55117e-06	2.61455e-06	2.3582e-06	2.30358e-06
5	2.08263e-10	2.28161e-07	2.08009e-07	3.98022e-07	2.23582e-06	2.0078e-06	2.27346e-06	1.91787e-06
9	1.9339e-10	2.80564e-07	2.88219e-07	4.28262e-07	2.03246e-06	2.48068e-06	1.84909e-06	2.11256e-06
L	1.80385e-10	2.82055e-07	2.90612e-07	4.27253e-07	2.15658e-06	2.59125e-06	2.25338e-06	1.80522e-06
×	1.32388e-10	2.31408e-07	4.61339e-07	4.07749e-07	2.02783e-06	2.18583e-06	2.54472e-06	2.62528e-06
6	1.79737e-10	2.17863e-07	3.21397e-07	2.28343e-07	1.76808e-06	2.56868e-06	2.56607e-06	2.32049e-06
10	1.65812e-10	2.57393e-07	2.97094e-07	3.81504e-07	2.13213e-06	1.61864e-06	2.07725e-06	2.67023e-06
11	1.33364e-10	2.43996e-07	3.84483e-07	4.29802e-07	2.308e-06	2.18124e-06	2.44086e-06	2.32514e-06
12	1.84636e-10	2.05728e-07	3.06928e-07	3.85014e-07	2.06979e-06	2.33116e-06	2.30478e-06	2.09768e-06
13	1.39423e-10	2.42146e-07	2.99931e-07	3.82818e-07	2.4911e-06	2.32235e-06	2.51359e-06	3.64306e-06
14	1.47027e-10	2.83333e-07	2.7575e-07	4.07342e-07	1.86543e-06	1.87537e-06	2.43374e-06	2.40588e-06
15	1.65927e-10	3.08632e-07	2.87333e-07	2.53028e-07	2.10357e-06	2.61409e-06	1.99303e-06	2.41035e-06
16	9.53595e-11	2.60009e-07	2.74764e-07	3.30398e-07	1.84565e-06	1.79793e-06	1.98514e-06	2.37429e-06
17	2.16741e-10	1.9516e-07	3.41658e-07	3.81184e-07	1.86617e-06	2.02582e-06	2.27715e-06	2.94547e-06
18	1.66879e-10	1.95807e-07	3.79178e-07	4.8166e-07	2.22381e-06	2.08531e-06	1.51177e-06	2.55915e-06
19	1.69181e-10	1.67938e-07	3.05149e-07	3.59442e-07	2.10406e-06	1.8664e-06	1.92091e-06	2.42113e-06

基準ギャップセンサー配置ではあえて対称形を維持する形でギャップセンサーを配置しているため、対称なモードの特 異ベクトルに対応する特異値が縮退に近くなっていた。これに対してギャップセンサー配置を変更することによって対象 性を崩すと縮退でなくなることが期待されるが、それぞれのギャップセンサーについてどのようなモードに対して効果が あるかについてまず確認する。

なお、結果を簡単に把握しやすくするために、セグメントの並進・回転については理想位置である(全て0にする)と する。

4.1 ギャップセンサー配置のパターン

ギャップセンサーは取り付いている部分によって大きく5種類に分けられる。

- 内環と内周セグメントの間
- 内周セグメント同士の間
- 内周・外周セグメントのうち奇数 ID を持つ外周セグメントにつくもの
- 内周・外周セグメントのうち偶数 ID を持つ外周セグメントにつくもの
- 外周セグメント同士の間

セグメントの ID は内周が 1-6、外周が 7-18 となるシミュレータでの定義を意味し、奇数 ID の外周セグメントは一つ の内周セグメントだけに接するが、偶数 ID の外周セグメントは二つの内周セグメントに接する。この二つの内周・外周 セグメント間のギャップセンサーについて、奇数 ID をもつ外周セグメントにつくものは内周・外周セグメントともに辺 の中央近くにギャップセンサーが配置され、逆に偶数 ID を持つ外周セグメントにつくものは辺の端に配置されることに なるため、ギャップセンサーにより把握できるセグメントの相対変動モードが異なる。

このそれぞれについてセグメント間中心線上でギャップセンサーを移動させた場合と、中心線からどちらかのセグメントの内部へギャップセンサーを移動させた場合の二つによる影響を検証する。

4.2 特異ベクトル・特異値への影響の評価

Zernike 多項式で表したときの表1にあるよりも高次の項に対応するモードや、基準ギャップセンサー配置(図2)にある ID 35 や ID 42 のような緩やかに変化するのでなく隣り合うセグメントで折れ曲がるようなモードは、基準ギャップセンサー配置よりも(数を減らして)ギャップセンサーをより対称形にしない限り縮退に近づくことは無いと考えられ、どちらかというと評価は基準ギャップセンサー配置で特異値が小さいものを中心として行うべきである。よって、この評価では ID 43 以降の特異ベクトル・特異値についてみることとし、それぞれのギャップセンサー配置に対して

- ギャップセンサー配置図 (ex. 図 1)
- ID 43 57 の特異ベクトルの表示 (ex. 図 3)
- 表1に対応する特異値・ベクトルの一覧

を作成することで評価する。

4.3 ギャップセンサー配置による特異値への影響 --- セグメント間同一・辺毎単独

4.3.1 内環に対する配置

内環について、ギャップセンサーの取りえる配置はセグメントの内周辺の中央からずらした配置のみとなる。中央点に対して左右どちらにずらすかは対称であるので同じ効果であるはずで、片側についてずらす量を変えた2つ(X軸100mm と 200mm)についての結果が、それぞれ図8(100mm,配置図7)図10(200mm,配置図9)となる。

Zernike AstigTri 30のモードに効果が見られる。

4.3.2 内周セグメント間に対する配置 — 中心線上

内周セグメント間のギャップセンサーの配置を、セグメント間の中心線上で 1/3,2/3 でなく近づけたり端に配置したり することでどのように変化するかを見る。ギャップセンサーをセグメント間中心線の中央点に対して対称になる配置で位 置をずらすものと、二つのギャップセンサーを内環側、もしくは外周側にずらすものの両方について調べる。 試行するギャップセンサーの配置は以下のようにとる。

3 (2/5, 3/5): 中心対称で中心から 1/10

4 (1/4, 3/4): 中心対称で中心から 1/4

- 5 (1/10, 9/10): 中心対称で中心から 2/5
- 6 (0,1): 両端
- 7 (1/4,2/4): 内環側にずらす
- 8 (2/4, 3/4): 外周側にずらす
- 9 (1/4, 2/3): 非対称

4.3.3 内周セグメント間に対する配置 --- セグメント内

内周セグメント間の中心線からセグメント内に入った位置にギャップセンサーを定義すると、ギャップセンサーによる 測定点2つが作る直線が主軸とねじれの位置にくるようにでき、より対象性を崩すことが可能になる。このセグメント 内部の位置について入る距離、2つのギャップセンサーでの方向などを変えて試験を行う。

セグメント間中心線から入る距離として試行する配置は以下のように取る。なお、中心線上は (1/3,2/3) とし、両方に -1 をかけた配置は裏・表の対称形になるだけであるので試験しない。

- 10 (0, +25)
- 11 (0, +50)
- 12 (+25, 0)
- 13 (+50, 0)
- 14 (+50, +50)
- 15 (-50, +50)

図 8: 試行1 — 特異ベクトル分布

図 10: 試行 2 — 特異ベクトル分布

図 12: 試行 3 — 特異ベクトル分布

図 14: 試行 4 — 特異ベクトル分布

図 16: 試行 5 — 特異ベクトル分布

図 18: 試行 6 — 特異ベクトル分布

図 20: 試行 7 — 特異ベクトル分布

図 22: 試行 8 — 特異ベクトル分布

図 24: 試行 9 — 特異ベクトル分布

図 26: 試行 10 --- 特異ベクトル分布

図 28: 試行 11 — 特異ベクトル分布

図 30: 試行 12 --- 特異ベクトル分布

図 32: 試行 13 — 特異ベクトル分布

図 34: 試行 14 --- 特異ベクトル分布

図 36: 試行 15 --- 特異ベクトル分布

4.3.4 外周セグメント間に対する配置 --- 中心線上

内周セグメントと同じく、外周セグメントに対しても中心線上で以下のようにずらした配置を検証することで、ギャッ プセンサー取り付け位置の影響をみる。

(2/5,3/5):中心対称で中心から1/10
(1/4,3/4):中心対称で中心から1/4
(1/10,9/10):中心対称で中心から2/5
(0,1):両端
(1/4,2/4):内環側にずらす
(2/4,3/4):外周側にずらす
(1/4,2/3):非対称

4.3.5 外周セグメント間に対する配置 --- セグメント内

内周セグメントと同じく、外周セグメントに対しても中心線からセグメント内に入った位置にくるようなずらした配置を検証することで、ギャップセンサー取り付け位置の影響をみる。

- 23 (0, +25)
- 24 (0, +50)
- 25 (+25, 0)
- 26 (+50, 0)
- 27 (+50, +50)
- 28 (-50, +50)

図 38: 試行 16 --- 特異ベクトル分布

図 40: 試行 17 --- 特異ベクトル分布

図 42: 試行 18 --- 特異ベクトル分布

図 44: 試行 19 --- 特異ベクトル分布

図 46: 試行 20 — 特異ベクトル分布

図 48: 試行 21 — 特異ベクトル分布

図 50: 試行 22 — 特異ベクトル分布

図 52: 試行 23 — 特異ベクトル分布

図 54: 試行 24 — 特異ベクトル分布

図 56: 試行 25 — 特異ベクトル分布

図 58: 試行 26 --- 特異ベクトル分布

図 60: 試行 27 — 特異ベクトル分布

図 62: 試行 28 — 特異ベクトル分布

4.3.6 内外周セグメント間に対する配置 — 中心線上

内周・外周の片側ずつでなくて両方に対して同じ配置を試し、ギャップセンサー取り付け位置の影響をみる。

29 (2/5,3/5):中心対称で中心から1/10
30 (1/4,3/4):中心対称で中心から1/4
31 (1/10,9/10):中心対称で中心から2/5
32 (0,1):両端
33 (1/4,2/4):内環側にずらす
34 (2/4,3/4):外周側にずらす
35 (1/4,2/3):非対称

4.3.7 内外周セグメント間に対する配置 --- セグメント内

内周・外周の片側ずつでなくて両方に対して中心線からセグメント内に入った同じ位置にくるようなずらした配置を 検証することで、ギャップセンサー取り付け位置の影響をみる。

- 36 (0, +25)
- 37 (0, +50)
- 38 (+25, 0)
- 39 (+50, 0)
- 40 (+50, +50)
- 41 (-50, +50)

図 64: 試行 29 --- 特異ベクトル分布

図 66: 試行 30 --- 特異ベクトル分布

図 68: 試行 31 — 特異ベクトル分布

図 70: 試行 32 --- 特異ベクトル分布

図 72: 試行 33 — 特異ベクトル分布

図 74: 試行 34 --- 特異ベクトル分布

図 76: 試行 35 --- 特異ベクトル分布

図 78: 試行 36 — 特異ベクトル分布

図 80: 試行 37 — 特異ベクトル分布

図 82: 試行 38 --- 特異ベクトル分布

図 84: 試行 39 --- 特異ベクトル分布

図 86: 試行 40 — 特異ベクトル分布

図 88: 試行 41 — 特異ベクトル分布

4.3.8 内・外周セグメント間に対する配置 — 中心線上

内・外周セグメント間に対する配置は、奇数の外周セグメントに1つ、偶数の外周セグメントに2つのギャップセン サーが取り付けられるようになっている。

この配置を以下のように少しずつ変化させて様子を見る。記述されている値は、内周セグメントの外周側辺における 位置に変換している。

42 (-7/16, 0, 7/16)

43 (-5/16, 0, 5/16)

44 (-7/16, 2/16, 7/16)

45 (-6/16, 2/16, 6/16)

46 (-5/16, 2/16, 5/16)

図 90: 試行 42 --- 特異ベクトル分布

図 92: 試行 43 — 特異ベクトル分布

図 94: 試行 44 — 特異ベクトル分布

図 96: 試行 45 --- 特異ベクトル分布

図 98: 試行 46 --- 特異ベクトル分布
3 つのギャップセンサーを内・外周セグメントの中央点からセグメントの内側へずらした配置を検証する。3 つのギャッ プセンサー (-4/16, 0, 4/16) に対する中央点からの距離を以下のように取る。

47 (+25, 0, +25) 48 (+50, 0, +50) 49 (-50, 0, -50) 50 (0, +25, 0) 51 (0, +50, 0) 52 (0, -50, 0) 53 (+50, -50, +50) 54 (-50, +50, -50) 55 (0, +50, +50) 56 (0, +50, -50) 57 (0, -50, +50) 58 (0, -50, -50) 59 (-25, 0, -25) 60 (0, -25, 0) 61 (0, +75, 0) 62 (-75, 0, -75)

図 100: 試行 47 — 特異ベクトル分布

図 102: 試行 48 — 特異ベクトル分布

図 104: 試行 49 — 特異ベクトル分布

図 106: 試行 50 — 特異ベクトル分布

図 108: 試行 51 — 特異ベクトル分布

図 110: 試行 52 — 特異ベクトル分布

図 112: 試行 53 — 特異ベクトル分布

図 114: 試行 54 — 特異ベクトル分布

図 116: 試行 55 — 特異ベクトル分布

図 118: 試行 56 — 特異ベクトル分布

図 120: 試行 57 — 特異ベクトル分布

図 122: 試行 58 — 特異ベクトル分布

図 124: 試行 59 — 特異ベクトル分布

図 126: 試行 60 — 特異ベクトル分布

図 128: 試行 61 — 特異ベクトル分布

図 130: 試行 62 — 特異ベクトル分布

4.3.10 全体評価

これまでに試したパターンについての Zernike モード(表1)との対応関係は表9となる。

特異値 ID の数字の後ろの記号は、メインのモード (Zernike モード) に対して擾乱として加わっているモードを示す。r は 1/24 もしくは 1/12 回転、v は外周セグメント部分に基準ギャップセンサーの ID 42 のような特異ベクトルが加わって いる、c は対応する Zernike モード (たとえば、5(2,2) なら 6(2,-2) などの対応モード) との間でちょうど中間になるように 回転している¹³、をそれぞれしめす。

また、特異値の値の色はそれぞれ、10倍以上増加、5倍以上増加、1/5以下に減少をしめす。

¹³この場合、対応するモードとの間でモードの移転が生じているとも言え、基準ギャップセンサー配置での特異値が異なる場合は二つの平均に近い 値を示していることが多い。

表 9: Zernike モードとの対応一覧

β	場所	4	4 (2,0)	41	5 (2,2)	9	(2,-2)	(-	7 (3,1)	8	(3,-1)		9 (4,0)		10 (3,3)		1 (3,-3)
		Ц	efocus		Astig		Astig	•	Coma	0	Coma		Sphere	Ā	stigTri 0	\mathbf{As}	tigTri 30
0	査準	54	0.00067	52	0.05535	51	0.05535	48r	0.18862	47r	0.18862	50	0.11354	49	0.17583	53	0.00223
-	പ 1	54	0.00066	51	0.06014	52	0.06014	47r	0.18833	48r	0.18833	50	0.11255	49	0.17812	53	0.05814
7	瓓 2	54	0.00066	52	0.06987	53	0.06987	47r	0.18743	48r	0.18743	50	0.10943	49	0.18560	51	0.09874
$\frac{1}{2}$	「「」」	54-	0.00066	51		52	0.04371	 49v	0.12807	 48v	0.12807	20	$-\frac{-1}{0.11353}$	47	0.14996	53	0.00218
4		54	0.00067	51	0.06518	52	0.06518	48r	0.19607	49r	0.19607	50	0.11354	47	0.20580	53	0.00220
5		54	0.00071	51	0.07324	52	0.07324	48r	0.19686	49r	0.19686	50	0.11356	47	0.24301	53	0.00221
9		54	0.00073	51	0.07566	52	0.07566	48r	0.19698	49r	0.19698	50	0.11358	47	0.25783	53	0.00221
٢	内間内	54	0.00066	51	0.05474	52	0.05474	43v	0.19772	44v	0.19772	50	0.11354	49	0.13281	53	0.00221
8	内間外	54	0.00066	52r	0.04302	51r	0.04302	48c	0.16027	49c	0.16027	50	0.11353	47	0.19289	53	0.00208
6	内間非	54	0.00067	51	0.06267	52	0.06267	47r	0.19559	48r	0.19559	50	0.11354	49	0.18372	53	0.00221
10	 内間入	54-	0.00284	 51r	- $ -$	52r	0.05534	 47r	0.18894		0.18894	-20	0.11824	- 49 - 19	0.17655	53	0.01518
11		54	0.00509	51r	0.05529	52r	0.05529	47c	0.18982	48c	0.18982	50	0.13143	49	0.17842	53	0.02846
12		54	0.00379	51r	0.05579	52r	0.05579	47c	0.18896	48c	0.18896	50	0.12251	49	0.17581	53	0.02327
13		54	0.00623	51	0.05703	52	0.05703	47c	0.18987	48c	0.18987	50	0.14491	49	0.17590	53	0.04467
14		54	0.00201	51r	0.05646	52r	0.05646	47c	0.18796	48c	0.18796	50v	0.11451	49	0.17730	53	0.03398
15		54	0.00808	52r	0.05726	53r	0.05726	48c	0.19253	49c	0.19253	47	0.19279	50r	0.17992	51r	0.06076
16^{-1}	外間対	54	0.00041	52	0.05008	51	0.05008	49	0.11933	48	0.11933	50	0.08160	47	0.15526	53	0.00190
17		54	66000.0	51r	0.05816	52r	0.05816	43c	0.28731	44c	0.28731	50	0.13427	49	0.19258	53	0.00234
18		54	0.00156	52c	0.06004	51c	0.06004	43v	0.41155	42v	0.41155	50	0.14977	47	0.20634	53	0.00244
19		54	0.00193	52c	0.06054	51c	0.06054	48cv	0.20615	49cv	0.20615	50	0.15416	47	0.21045	53	0.00247
20	外間内	54	0.00053	51r	0.05398	52r	0.05398	48c	0.15598	49c	0.15598	50	0.11491	47	0.16195	53	0.00221
21	外間外	54	0.00048	52c	0.05156	51c	0.05156	49	0.13917	48	0.13917	50	0.08046	47	0.16613	53	0.00188
22	外間非	54	0.00083	51c	0.05735	52c	0.05735	48v	0.20089	47v	0.20089	50	0.13016	49	0.18575	53	0.00232
23	外間入	53	0.01523	51r	0.05527	52r	0.05527	48v	0.18894	47v	0.18894	50	0.11446	49	0.17540	54	0.00737
24		53	0.02959	51c	0.05508	52c	0.05508	47v	0.19019	48v	0.19019	50	0.11811	49	0.17427	54	0.01630
25		54	0.01909	51c	0.05556	52c	0.05556	48r	0.18936	47r	0.18936	50	0.11229	49	0.17598	53	0.02206
26		54	0.03547	52c	0.05614	51c	0.05614	48r	0.19167	47r	0.19167	50	0.11072	49	0.17646	53	0.04192
27		54	0.00594	52c	0.05576	51c	0.05576	47v	0.18903	48v	0.18903	50	0.10757	46	0.17582	53	0.02386
28		54	0.04850	52r	0.05581	51r	0.05581	47v	0.19976	48v	0.19976	50	0.13148	48r	0.19976	53r	0.05522
29	立間な	54	0.00040	51	0.03871	52	0.03871	49	0.11468	48	0.11468	50	0.08159	47	0.13175	53	0.00185

表 9: Zernike モードとの対応一覧

Θ	場所		4 (2,0)	4,	5 (2,2)	9	(2,-2)	7 (3,1)	8 ()	3,-1)		9 (4,0)	-	0 (3,3)	1	(3,-3)
		Ц	efocus		Astig	1	Astig	ŭ	ma	ŭ	ma	•	Sphere	As	stigTri 0	$\mathbf{A}_{\mathbf{S}}$	igTri 30
30		54	66000.0	52c	0.06828	51c	0.06828	48v	0.27651	47v	0.27651	50	0.13428	49	0.22658	53	0.00235
31		54	0.00158	52r	0.07900	51r	0.07900	43	0.43219	42	0.43219	50	0.14979	49	0.29515	53	0.00244
32		54	0.00195	52r	0.08230	51r	0.08230	43	0.52139	42	0.52139	50	0.15419	49	0.32600	53	0.00247
33	両間内	54	0.00053	51r	0.05339	52r	0.05339	45,46c	0.16448	47,48c	0.14369	50	0.11492	49	0.12502	53	0.00223
34	両間外	54	0.00047	52r	0.04002	51r	0.04002	49c	0.13514	48c	0.13514	50	0.08046	45	0.18418	53	0.00172
35	車間非	54	0.00084	51c	0.06484	52c	0.06484	48v	0.23427	47v	0.23427	50	0.13016	49	0.19418	53	0.00233
36	「山間」	53	0.01561	51r	0.05505	52r	0.05505		0.18902		0.18902	50	0.11691	49	0.17552	54	0.00857
37		53	0.03128	51c	0.05417	52c	0.05417	47c	0.19069	48c	0.19069	50v	0.12751	49r	0.17455	54r	0.01699
38		54	0.01976	51c	0.05589	52c	0.05589	48r	0.19000	47r	0.19000	50	0.12475	49	0.17567	53	0.03077
39		54	0.03881	52r	0.05730	53r	0.05730	48r	0.19339	47r	0.19339	50	0.15226	49r	0.17547	51r	0.05900
40		54	0.00614	52c	0.05767	51c	0.05767	47c	0.18975	48c	0.18975	50v	0.12739	49	0.17888	53	0.04997
41		51	0.06770	54c	0.05474	53c	0.05474	47c	0.20368	48c	0.20368	49v	0.19382	50c	0.17282	52c	0.06218
42	 内外上	54-	0.00071	51r	0.05956	52r	0.05956	 42r	0.19994	43r	0.19994	- 4 - 84 -	0.15127	47 -	0.16581	53	0.00194
43		54	0.00061	51	0.05472	52	0.05472	48r	0.18538	49r	0.18538	50	0.09348	47	0.20246	53	0.00219
44		54	0.00074	51r	0.05712	52r	0.05712	43v	0.22013	44v	0.22013	50v	0.10037	47r	0.16295	53r	0.01786
45		54	0.00070	51r	0.05486	52r	0.05486	48c	0.18811	47c	0.18811	50	0.08781	49	0.17329	53	0.02298
46		54	0.00062	51r	0.05509	52r	0.05509	49c	0.19193	48c	0.19193	50	0.07023	47	0.20123	53	0.01613
47		54-	0.00062	51r	0.05486	 52r	0.05486	 47r	0.18439		0.18439	50	0.16042	- 49	0.17734	- <u>-</u> - 23 -	0.00220
48		54	09000.0	51	0.05439	52	0.05439	48c	0.17963	49c	0.17963	47	0.20507	50	0.17907	53	0.00220
49		52	0.03603	50	0.05633	51	0.05633	48v	0.18766	48v	0.18766	54	0.00150	49	0.17321	53	0.00217
50		54	0.00082	51r	0.05508	52r	0.05508	47c	0.18786	48c	0.18786	50	0.06515	49	0.17367	53	0.00217
51		52	0.03229	50r	0.05482	51r	0.05482	47cv	0.18787	48cv	0.18787	54	0.00148	49	0.17163	53	0.00215
52		54	0.00063	51r	0.05578	52r	0.05578	48cv	0.19250	49cv	0.19250	45	0.22051	50	0.18027	53	0.00222
53		54	0.00061	51	0.05464	52	0.05464	48c	0.19129	49c	0.19129	43	0.31105	50	0.18302	53	0.00223
54		54	0.00087	51r	0.05561	52r	0.05561	48v	0.18694	47v	0.18694	50	0.10550	49	0.16859	53	0.00213
55		54	0.00075	51r	0.05442	52r	0.05442	47v	0.17909	48v	0.17909	50v	0.06361	49	0.17313	53	0.00212
56		54v	0.00114	50r	0.05518	51r	0.05518	48v	0.18701	47v	0.18701	52v	0.05503	49	0.16991	53	0.00216
57		54	0.00062	51r	0.05517	52r	0.05517	48v	0.18880	49v	0.18880	43v	0.25682	50	0.18144	53	0.00218
58		54	0.00065	51r	0.05631	52r	0.05631	48v	0.18773	47v	0.18773	50v	0.16429	49	0.17917	53	0.00224

表 9: Zernike モードとの対応一覧

	1				
1 (3,-3)	stigTri 30	0.00218	0.00216	0.00221	0.00213
1	As	53	53	53	53
10 (3,3)	stigTri 0	0.17443	0.17213	0.17801	0.16972
	A	49	49	49	49
9 (4,0)	Sphere	0.06660	0.06604	0.16593	0.05167
		50	50	50	52
3 (3,-1)	Coma	0.18937	0.18520	0.19030	0.18825
8	-	47v	47v	47cv	47rv
(3,1)	Coma	0.18937	0.18520	0.19030	0.18825
[-	•	48v	48v	48cv	48rv
(2,-2)	Astig	0.05583	0.05682	0.05558	0.05455
9		52r	52r	52r	51
(2,2)	Astig	0.05583	0.05682	0.05558	0.05455
ŝ		51r	51r	51r	50
1 (2,0)	efocus	0.00086	0.00107	0.00063	0.00119
4	D	54	54	54	54
場所					
Ð		59	09	61	62

この表9から判明する、ギャップセンサー配置をずらしたときの各 Zernike モードへの影響は次のようにまとめられる。

- 全セグメントで (内周・外周各同士) 同一配置なら、Astig, Coma などはペアとなる特異値は同一値 (33 を除く) 2,4 次などの対称形ペアは維持される; 33 はモードが他とマージ
- 内環を中央からずらすのは AstigTri 30 に効果がある—6次への非対称効果
- 内周セグメント間・外周セグメント間:辺上
 - 内周間を辺上で移動させても曲率に効果ない
 - 外周間の辺上移動は2点間の距離の長さと配置が内側に行くほど効果が出る
 - 内環・内外間のペアと内周間のペアは曲率には同一効果だが、外環が無いので外周では効果が出た? (but: 20 > 21 になっている)
 - 辺の両端、もしくは2つを同時に端に動かすと外周アクチュエータに細かい振動モードが加わって基本モードからずれる(混じる)
- 内周セグメント間・外周セグメント間: セグメント内
 - セグメント内にずらすと曲率・AstigTri 30 に効果があり他はほぼ変化なしか微妙に改善
 - 内周はどちらかというと AstigTri 30 に効果、外周では Defocus に効果が見られ、両方行った場合は効果の積 算状態になっている
 - 14,27,40: ギャップセンサーが半径方向に並ぶ配置は効果が出ない
 - 0~50の範囲なら2つのギャップが広がるほど効果的(15,28,41が最大)
 - 内側と外側だと内側のを動かすほうが効果的
- 内・外セグメント間:辺上
 - 両脇を対称 (±3/8) からずらすと、内側へで AstigTri (0) に、外側へでそれ以外の全てに若干の効果がある
 - 中央を対称 (0) からずらすと、AstigTri 30 に効果があるが、曲率 (Defocus, Sphere) に微妙な減少
- 内・外セグメント間:辺上
 - セグメント内に配置すると曲率2つ(Defocus, Sphere)に少し効果があるが、外周アクチュエータに細かい振動モードが加わって基本モードからずれる— Defocus/Sphere は片方が改善するともう一方は悪化し、Defocus への効果は小さい
 - Coma, Astig, AstigTri は影響をほとんど受けない(特異値変化で1割以下とか)
 - セグメント内配置では Defocus/Sphere が交代する配置 (49,51) あり— 内周セグメント上で中央のものが両端 に比べ 50mm 内側に入った配置のみ影響があり、25,75mm では影響が見られない (59,60;50,62) ので、局所的 な線形性の影響と考えられる。

まとめると、単体での効果は以下のように結論付けられる。

- 最大値の1%以上の52のモード以上は考慮しないとする(53,54のみ考慮)
- 54:Defocus は内周間・外周間のセグメント内へ
- 53:AstigTri 30 は内周間・外周間のセグメント内へ、内環の非対称配置
- 内外周間ギャップセンサーをセグメント内に入れるときは局所的な線形性にはまらないように注意すべき

4.4 ギャップセンサー配置による特異値への影響 --- セグメント間同一・辺毎複合

前節ではギャップセンサー配置場所グループ毎に、辺上で動かすパターンと辺からセグメント内に入ったパターンを組 み合わせた場合にどうなるかを試験する。なお、ここでは、ギャップセンサーがあるセグメントの一つの角に集まってし まう配置を避け、比較しやすくするために辺毎に組み合わせを試験する。

前節より、4種類のギャップセンサーについて効果的であった以下のような配置の組み合わせを、それぞれのギャップ センサーグループごとに検証する。なお、動かさないグループについては基準配置にする。

- 内周間:辺上は(1/4,3/4)(1/10,9/10)(0,1)、セグメント内は(0,+50)(+50,0)(-50,+50)
- 外周間:辺上は(1/4,3/4)(1/10,9/10)(0,1)、セグメント内は(0,+50)(+50,0)(-50,+50)
- 内外間:辺上は(-7/16,0,-7/16)(-7/16,2/16,-7/16)(-6/16,2/16,6/16)セグメント内は(+50,-50,+50)(0,-50,+50)

4.4.1 内周間ギャップセンサー配置による影響

内周間ギャップセンサー配置と ID は以下のような対応になる。

b01 (1/4 0, 3/4 +50) page 96
b02 (1/10 0, 9/10 +50) page 97
b03 (0 0, 1 +50) page 98
b04 (1/4 +50, 3/4 0) page 99
b05 (1/10 +50, 9/10 0) page 100
b06 (0 +50, 1 0) page 101

b07 (1/4-50, 3/4+50) page 102

b08 (1/10 -50, 9/10 +50) page 103

b09 (0-50, 1+50) page 104

図 132: 試行 b01 — 特異ベクトル分布

図 134: 試行 b02 — 特異ベクトル分布

図 136: 試行 b03 — 特異ベクトル分布

図 138: 試行 b04 — 特異ベクトル分布

図 140: 試行 b05 — 特異ベクトル分布

図 142: 試行 b06 — 特異ベクトル分布

図 144: 試行 b07 — 特異ベクトル分布

図 146: 試行 b08 — 特異ベクトル分布

図 148: 試行 b09 — 特異ベクトル分布

外周間ギャップセンサー配置と ID は以下のような対応になる。組み合わせパターンは内周と同じ。

b10 (1/4 0, 3/4 +50) page 106 b11 (1/10 0, 9/10 +50) page 107 b12 (0 0, 1 +50) page 108 b13 (1/4 +50, 3/4 0) page 109 b14 (1/10 +50, 9/10 0) page 110 b15 (0 +50, 1 0) page 111

b16 (1/4-50, 3/4+50) page 112

b17 (1/10 -50, 9/10 +50) page 113

b18 (0-50, 1+50) page 114

図 150: 試行 b10 — 特異ベクトル分布

図 152: 試行 b11 — 特異ベクトル分布

図 154: 試行 b12 — 特異ベクトル分布

図 156: 試行 b13 — 特異ベクトル分布

図 158: 試行 b14 — 特異ベクトル分布

図 160: 試行 b15 — 特異ベクトル分布

図 162: 試行 b16 — 特異ベクトル分布

図 164: 試行 b17 — 特異ベクトル分布

図 166: 試行 b18 — 特異ベクトル分布

ここで、内周間・外周間の双方を同じような配置にしたパターンも検証しておく。内周間・外周間ギャップセンサー配置と ID は以下のような対応になる。

b19 (1/4 0, 3/4 +50) page 116
b20 (1/10 0, 9/10 +50) page 117
b21 (0 0, 1 +50) page 118
b22 (1/4 +50, 3/4 0) page 119
b23 (1/10 +50, 9/10 0) page 120
b24 (0 +50, 1 0) page 121
b25 (1/4 -50, 3/4 +50) page 122

- b26 (1/10-50, 9/10+50) page 123
- b27 (0-50, 1+50) page 124

図 168: 試行 b19 — 特異ベクトル分布

図 170: 試行 b20 — 特異ベクトル分布

図 172: 試行 b21 — 特異ベクトル分布

図 174: 試行 b22 — 特異ベクトル分布

図 176: 試行 b23 — 特異ベクトル分布

図 178: 試行 b24 — 特異ベクトル分布

図 180: 試行 b25 — 特異ベクトル分布

図 182: 試行 b26 — 特異ベクトル分布

図 184: 試行 b27 — 特異ベクトル分布

4.4.4 内外間ギャップセンサー配置による影響

内外間ギャップセンサー配置と ID は以下のような対応になる。

b28 (-7/16 +50, 0 -50, 7/16 +50) page 126

b29 (-7/16 0, 0 -50, 7/16 +50) page 127

b30 (-7/16 +50, 2/16 -50, 7/16 +50) page 128

b31 (-7/16 0, 2/16 -50, 7/16 +50) page 129

b32 (-6/16 +50, 2/16 -50, 6/16 +50) page 130

b33 (-6/16 0, 2/16 -50, 6/16 +50) page 131

図 186: 試行 b28 — 特異ベクトル分布

図 188: 試行 b29 — 特異ベクトル分布

図 190: 試行 b30 — 特異ベクトル分布

図 192: 試行 b31 — 特異ベクトル分布

図 194: 試行 b32 — 特異ベクトル分布

図 196: 試行 b33 — 特異ベクトル分布

4.4.5 全体評価

この節で試したパターンについての Zernike モード (表 1) との対応関係は表 10 となる。 対応 ID の記号は表 9 と同じ。ただし、特異値の表示については色分けにあまり意味がない表のため行っていない。 表 10: Zernike モードとの対応一覧

[1] (3,-3)	stigTri 30	0.00223	0.02190	0.01728	0.01641	0.03882	0.03259	0.03016	0.04761	0.03335	0.02752	0.00743	0.00144	0.00386	0.03557	0.02915	0.02670	0.04044	0.02622	0.02092	0.0153	0.01904	0.02104	0.05118	0.04413	0.04159	0.04535	0.02967	0.02380	0.00197
	Α	53	53	53	53	53	53	53	53r	53r	53	54	54	54	54	54	54	54	54r	54	 54r	54r	54r	53r	53	54	54r	54r	54r	53
0 (3,3)	stigTri 0	0.17583	0.20657	0.24176	0.25606	0.20578	0.24292	0.25778	0.20695	0.24120	0.25555	$-\overline{0.19152}$	0.20565	0.20993	0.19392	0.20771	0.21172	0.19249	0.20648	0.21056	0.22688	0.29597	0.32689	0.22675	0.29552	0.32644	0.22544	0.29459	0.32555	
-	Ÿ	49	47	47	47	47	47	47	47r	47r	47	- 49 -	47	47	49	49	49	49	49r	49	 49r	49r	49r	49r	49	49	49r	49r	49r	48
(4,0)	phere	0.11354	0.12816	0.12301	0.12018	0.14807	0.15302	0.15577	0.19080	0.18615	0.18246	0.13837	0.15288	0.15640	0.13020	0.14733	0.15312	0.14702	0.16322	0.16851	0.14559	0.15920	0.16229	0.16994	0.18586	0.19148	0.20302	0.21117	0.21252	0.34319
6	S	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50v	50v	40^{-1}
(3,-1)	oma	0.18862	0.19608	0.19685	0.19698	0.19609	0.19686	0.19698	0.19619	0.19686	0.19698	0.20299	0.20421	0.20508	0.22385	0.22346	0.22165	0.22933	0.22109	0.21663	0.27448	0.43397	0.52252	0.28222	0.43418	0.52267	0.28727	0.43950	0.52613	0 10877
∞	0	47r	49r	 47rv	48rv	48rv	47rv	47rv	47cv	47v	47cv	47rv	47cv	42r	42	47r	44c	42r	47v	43c	42									
(3,1)	oma	0.18862	0.19608	0.19685	0.19698	0.19609	0.19686	0.19698	0.19619	0.19686	0.19698	$\frac{1}{0.20299}$	0.20421	0.20508	0.22385	0.22346	0.22165	0.22933	0.22109	0.21663	0.27448	0.43397	0.52252	0.28222	0.43418	0.52267	0.28727	0.43950	0.52613	0 10877
7	0	48r	 48rv	49rv	49rv	48rv	48rv	48cv	48v	48cv	48rv	 48cv	43r	43	48r	43c	43r	48v	44c	43	- 427									
(2,-2)	Astig	0.05535	0.06492	0.07307	0.07559	0.06649	0.07428	0.07661	0.06577	0.07327	0.07563	0.05796	0.05994	0.06049	0.05878	0.06048	0.06093	0.05833	0.06006	0.06053	0.06745	0.07880	0.08241	0.07023	0.08116	0.08450	0.06726	0.07835	0.08184	0.05820
9	1	51	52r	52r	52r	52r	52	52	52r	52	52	 52r	52r	51r	51r	52r	51r	51r	52r	52	- <u>-</u> - 52c	52r	52c	52r	52r	51r	53r	52r	52c	- ²
(2,2)	stig	0.05535	0.06492	0.07307	0.07559	0.06649	0.07428	0.07661	0.06577	0.07327	0.07563	0.05796	0.05994	0.06049	0.05878	0.06048	0.06093	0.05833	0.06006	0.06053	0.06745	0.07880	0.08241	0.07023	0.08116	0.08450	0.06726	0.07835	0.08184	0.050.0
5	Z	52	51r	51r	51r	51r	51	51	51r	51	51		51r	52r	52r	51r	52r	52r	51r	51	- <u>-</u> 51c	51r	51c	51r	51r	52r	52r	51r	51c	- -
(2,0)	efocus	0.00067	0.00470	0.00394	0.00339	0.00643	0.00671	0.00685	0.00803	0.00792	0.00783	0.02873	0.02611	0.02415	0.03752	0.04004	0.04141	0.05436	0.05723	0.05745	0.02978	0.02672	0.02458	0.04033	0.04279	0.04428	0.06735	0.06621	0.06518	0 00063
4	Ā	54	54	54	54	54	54	54	54	54	54	53	53	53	53	53	53	53	53	53	53	53	53	54	54	53	51	53	53	, v
場所		基準										 									 									
Ð		0	b01	b02	b03	b04	b05	b06	b07	b08	60q	$\frac{-}{b10}$	b11	b12	b13	b14	b15	b16	b17	b18	$\frac{1}{b19}$	b20	b21	b22	b23	b24	b25	b26	b27	128

表 10: Zernike モードとの対応一覧

記	4	(2,0)	5	(2,2)	9	(2,-2)	L	(3,1)	8	3,-1)	6	(4,0)	1((3,3)	11	. (3,-3)
	De	focus	ł	Astig	ł	Astig	C	oma	C	oma	S	phere	Ast	tigTri 0	Ast	igTri 30
1 17	4	0.00062	51r	0.05573	52r	0.05573	49cv	0.14634	50cv	0.14634	48v	0.16760	47	0.17150	53	0.01883
\mathbf{n}	4	0.00064	51r	0.05598	52r	0.05598	43rv	0.23424	44rv	0.23424	45v	0.22453	48	0.17158	53	0.01815
\mathbf{v}	4	0.00061	51r	0.05445	52r	0.05445	49cv	0.18791	48cv	0.18791	43v	0.25749	50	0.17898	53	0.02458
- UZ \	4	0.00062	51r	0.05454	52r	0.05454	49cv	0.19355	48cv	0.19355	43	0.26769	50	0.17852	53	0.02378

- 単独に動かしていた場合の効果を合わせた影響が現れている
- 内周間・外周間のセンサーが辺端にくると全体がばたつくモードが特異値順で小さいほうにくる(ただし値としては大きい)

4.5 ギャップセンサー配置による特異値への影響 -----1/3 対称形・辺毎

これまでは全てのセグメントに対して同じ配置、つまり内周については 1/6 対称、外周については 1/12 対称を維持していたが、ここでは対称性を少し崩し、隣り合う 2 つをペアとした配置を検証する。なお、単純化のため、これまでの結果と比較する形で検証し、内外周間については b28 – b33 の結果で効果が薄かったので除外する。

4.5.1 内環

試行 1,2 に対して内環のみを一つ毎に逆側に配置したもの同士を比較する。

図 197, 198 の両方とも Astig の二つと AstigTri 30 のモードが逆配置のほうで大きく悪化している。これは、この二つ のモードに関しては中心軸による回転対称性でなく、中心軸を通る線に対する対称(120度ごとの3本の対称軸、なども 含む)性をギャップセンサーの配置で崩すことが重要であることを意味すると考えられる。

図 197: 試行 1(上) に対する逆配置 (下; 1a)

図 198: 試行 2(上) に対する逆配置 (下; 2a)

試行 41 に対して、内周間・外周間ごとに隣り合う辺のセグメント内への配置状況を入れ替えた各モードを試験する。 組み合わせは、試行 41 や回転対称を除いて 11 モードになる。

図 200: 試行 c2 — 特異ベクトル分布

図 202: 試行 c3 — 特異ベクトル分布

図 204: 試行 c4 — 特異ベクトル分布

図 206: 試行 c5 — 特異ベクトル分布

図 208: 試行 c6 — 特異ベクトル分布

図 210: 試行 c7 — 特異ベクトル分布

図 212: 試行 c8 — 特異ベクトル分布

図 214: 試行 c9 — 特異ベクトル分布

図 216: 試行 c10 — 特異ベクトル分布

図 218: 試行 c11 — 特異ベクトル分布

図 220: 試行 c12 — 特異ベクトル分布

4.5.3 全体評価

この節で試したパターンについての Zernike モード (表 1) との対応関係は表 11 となる。 対応 ID の記号は表 9 と同じ。ただし、特異値の表示については色分けにあまり意味がない表のため行っていない。 この結果をまとめると次のようになる。

- 内環は中心軸に対する回転対称より 120° ごとの直径に対する対象性が重要
- 内周間・外周間は、41,c4,c9,c12のように全てのセグメントに対して同じ配置とするほうが全体的によい
- 内周間・外周間で同じ半径のギャップセンサーを同じセグメント内にくる方向に配置すると外周にばたつくモード が載ってきやすくなる

表 11: Zernike モードとの対応一覧

ID 場所		4 (2,0)	_	5 (2,2)	9	(2,-2)		(3,1)	8	(3,-1)	9	(4,0)	-	0(3,3)	-	1 (3,-3)
	I	Defocus		Astig	7	Astig		Coma	J	Coma	S	phere	As	tigTri 0	Ast	tigTri 30
★ ★ 0	54	0.00067	52	0.05535	51	0.05535	48r	0.18862	47r	0.18862	50	0.11354	49	0.17583	53	0.00223
1 പ 11	54	0.00066	51	0.06014	52	0.06014	47r	0.18833	48r	0.18833	50	0.11255	49	0.17812	53	0.05814
la	54	0.00066	51	0.04780	52	0.04780	47r	0.18769	48r	0.18769	50	0.11257	49	0.17717	53	0.00219
2	54	0.00066	52	0.06987	53	0.06987	 47r	0.18743	 48r	$ \frac{-}{0.18743}$	50 -	0.10943	- 49	- $ -$	51	0.09874
2a	54	0.00066	51r	0.02443	52r	0.02443	47cv	0.18469	48cv	0.18469	50	0.10960	49	0.18150	53	0.00217
H	51	0.06770	- 54c	0.05474	53c	0.05474	47c	0.20368	48c	0.20368	49v	0.19382	- 50c	0.17282	52c	0.06218
52	54	0.04305	53	0.05095	52	0.05095	49c	0.14647	50c	0.14647	47	0.23332	48r	0.17009	51r	0.06729
33	54	0.04182	51c	0.05248	52c	0.05248	50v	0.12002	49v	0.12002	48	0.16742	45	0.22923	53	0.04502
40	52	0.06912	53c	0.06125	54c	0.06125	48	0.20377	47	0.20377	49	0.20123	50	0.18846	51	0.09679
55	54v	0.06133	52c	0.06274	53c	0.06274	48cv	0.19548	49cv	0.19548	50v	0.13241	47	0.22124	51	0.10678
<u></u>	54v	0.03035	53	0.05777	52	0.05777	49cv	0.13151	50cv	0.13151	47v	0.23781	51	0.12152	48	0.13308
Ľ	54	0.03952	52c	0.05375	53c	0.05375	50v	0.11815	49v	0.11815	48v	0.12373	45	0.25045	51	0.05858
80	54v	0.06257	52c	0.06286	53c	0.06286	49v	0.19606	48v	0.19606	47v	0.22200	50v	0.13327	51r	0.10917
6	52	0.06816	54r	0.06108	53r	0.06108	47c	0.20375	48c	0.20375	49v	0.20167	50r	0.18741	51r	0.09545
10	54	0.04347	53	0.05113	52	0.05113	49cv	0.14661	50cv	0.14661	47	0.23480	48c	0.16832	51c	0.07064
11	54	0.04196	51c	0.05237	52c	0.05237	50v	0.11994	49v	0.11994	48v	0.16971	45	0.22907	53	0.04470
12	51	0.06903	1 53c	0.05488	54c	0.05488	48	0.20386	47	0.20386	49v	0.19719	50c	0.17248	52c	0.06591

5 まとめ

ここまでの結果から、大きな方針としては

- 内環は 60° ごとに配置してセグメントに対して中心に来ないように回転
- 内周間・外周間の辺上の位置は離すほうがいいが、端過ぎると外周アクチュエータに高次モードがのる
- 内周間・外周間は同じ辺上のものは互いに逆側のセグメントの中へシフトさせ、かつ内周もしくは外周の中では全てのセグメントで同じ配置に
- 内外周間は、内周から見て両脇を外側に、真ん中を中央からずらす
- 内外周間をセグメント内側に入れるときは直線状にならないように注意する

という5点にまとめられる。

よりいっそう対称形を崩すと多少特異値が改善するものの、対称形から崩せば崩すほど低次の Astig, Coma などのモードを制御する特異ベクトルのうち外周のアクチュエータの部分に高次のモードが載ってくるため、制御残差という面で見るとある低次モードが残ってしまったときに外周のばたつきという形で影響が見られる可能性が高くなる。