高エネルギー宇宙ニュートリノ 超新星起源説の観測的検証方法

田中雅臣(東北大学) 安田直樹 鈴木尚孝 高橋一郎 諸隈智貴 姜 継安(東京大) 冨永 望 山口正輝(甲南大) 守屋 尭(国立天文台) 他 HSC Transient WG

Why supernovae (SNe)?

Blazars' contribution to the diffuse neutrino flux (Talks by Ishihara-san and Hayashida-san)

Difficulties also in spectral slope (see talks by Murase-san)

Supernova with chocked jet? (low-luminosity GRB?)

Sakamoto-san's talk

Observed as "broad-line" SNe (~1 % of core-collapse SNe) c.f. Long GRBs (~0.1 % of core-collapse SNe)

Challenges in identifying SNe as neutrino sources

Strategy for multiplet event is straightforward

IceCube-160217 (triplet, z ~< 0.05)

*32% probability of a chance alignment of background

Strategy for singlet event

Subaru HSC transient surveys (~26 mag sensitivity) ~1800 SNe in 0.5 yr (~6 deg²)

(c.f. ~500,000 objects / deg²)

How many supernovae in 1 visit (26 mag)?

$N \sim RV\Delta t f_{\Omega} \sim 10 \left(\frac{R}{10^5 \text{ Gpc}^{-3} \text{ yr}^{-1}}\right) \left(\frac{V}{100 \text{ Gpc}^3}\right) \left(\frac{\Delta t}{20 \text{ days}}\right) \left(\frac{\Omega}{1 \text{ deg}^2}\right)$						⁊< በ 1
Туре	M _{abs} (mag)	Z _{max}	Δt (days)	Local rate (Gpc ⁻³ yr ⁻¹)	N (deg ⁻²)	N (deg ⁻²)
la	-19	1.3	20	0.3 x 10 ⁵	10 - 30	0.01
ll (H-rich)	-17	0.7	50	0.7 x 10⁵	10 - 30	0.05
lln (CSM)	-18	1.0	50	0.1 x 10 ⁵	4 - 12	0.007
lbc (H-free)	-17	0.7	20	0.2 x 10 ⁵	1 - 3	0.006
Broad line (hypernova)	-18	1.0	20	0.01 x 10 ⁵	0.2 - 0.6	0.0003
For IceCube-170922A						

0.15 deg² (50 %) and 0.97 deg² (90%)

Local rate x 3

How to identify broad-line SNe at z ^ (among >10 of Type Ia/II SNe)

(1) Photometric classification

- Need good time sampling cadence of 2-3 days continuous monitoring for ~50 days
- Need color information
 >= 3 filters

 (no redshift information in advance)

Yasuda, MT, Tominaga+18

(2) Spectroscopic confirmation
 Need realtime spectroscopy
 Multi-object spectroscopy? (Subaru/PFS)
 30m-class telescope (late 2020?)

How to estimate the explosion date?

Observations are sensitive to SNe around the peak => measure maximum date => assume "rise time"

(13 +- 2 days for GRB-SN, Cano+16)

~5 days uncertainty should remain for objects at z ~ 1

Number of unrelated broad-line SNe in a window of $\Delta t \sim 5 \text{ day}$ ~ 0.05-0.15 / deg²

Drout et al. 2011

Summary: how to identify SNe as neutrino sources

• Multiplet events (z < 0.1)

- Follow-up with 1-2m telescopes => spectroscopy
- Low contamination
- Singlet events (z ~ 1)
 - Follow-up with Subaru/HSC and LSST
 - High contamination
 - Dense, multi-color imaging
 => photometric classification and estimate of explosion date
 => Spectroscopy
 - ~ 0.2 broad-line SNe / deg² for a time window of $\Delta t \sim 5$ days

IceCube-Gen2

- Better sensitivity => more multiplet
- Better localization => lower contamination