高エネルギー宇宙ニュートリノから展開するマルチメッセンジャー天文学 ブレーザー TXS 0506+056における高エネルギー ガンマ線放射・ニュートリノ放射・宇宙線加速について High-energy gamma-ray emission, neutrino emission and cosmic ray acceleration in the blazar TXS 0506+056 井上進(理研) Susumu Inoue (RIKEN) Elisa Bernardini, Wrijupan Bhattacharya, Konstancja Satalecka (DESY), Fabrizio Tavecchio (INAF)

稲田知大^A, 岩村由樹^A, 神本匠^B, 櫛田淳子^B, 窪秀利^C, 久門拓^A, 齋藤隆之^A, 櫻井駿介^A, 高橋光成^A, 種田裕貴^B, 辻本晋平^B, 手嶋政廣^{A,D}, 中森健之^E, 永吉勤^A, 西嶋恭司^B, 野崎誠也^C, 野田浩司^A, Daniela Hadasch^A, 林田将明^A, 平子丈^C, 深見哲志^A, Daniel Mazin^{A,D}, 増田周^C, 他MAGIC Collaboration 東大宇宙線研^A, 東海大理^B, 京大理^C, MPI for Physics^D, 山形大理^E

 10^{-9}

10-13

 10^{-}

More details in MAGIC Coll., ApJ 863, L10, arXiv:1807.04300

log(v [Hz]) 8 10 12 14 16 18 20 22 24 26 28 30 高エネルギー宇宙ニュートリノから展開する電弱天文学 electroweak astronomy ブレーザー TXS 0506+056における高エネルギー ガンマ線放射・ニュートリノ放射・宇宙線加速について High-energy gamma-ray emission, neutrino emission and cosmic ray acceleration in the blazar TXS 0506+056 井上進(理研) Susumu Inoue (RIKEN) Elisa Bernardini, Wrijupan Bhattacharya, Konstancja Satalecka (DESY), Fabrizio Tavecchio (INAF)

稲田知大^A, 岩村由樹^A, 神本匠^B, 櫛田淳子^B, 窪秀利^C, 久門拓^A, 齋藤隆之^A, 櫻井駿介^A, 高橋光成^A, 種田裕貴^B, 辻本晋平^B, 手嶋政廣^{A,D}, 中森健之^E, 永吉勤^A, 西嶋恭司^B, 野崎誠也^C, 野田浩司^A, Daniela Hadasch^A, 林田将明^A, 平子丈^C, 深見哲志^A, Daniel Mazin^{A,D}, 増田周^C, 他MAGIC Collaboration 東大宇宙線研^A, 東海大理^B, 京大理^C, MPI for Physics^D, 山形大理^E

 10^{-9}

 10^{-11}

10-13

 10^{-4}

More details in MAGIC Coll., ApJ 863, L10, arXiv:1807.04300

log(v [Hz]) 8 10 12 14 16 18 20 22 24 26 28 30

IceCube, Fermi, MAGIC+, 2018, Science 361, eaat1378

neutrino emission from blazars

- py generally favored over pp in AGN jets
- target $\gamma \epsilon' \sim 20 m_{\pi} m_{p} c^{4}/E_{\nu} \delta^{-1}$ ~ 0.4 keV ($E_v/300 \text{ TeV}$)⁻¹ ($\delta/20$)
- unlike FSRQs, BL Lacs thought to: lack bright external γ fields, have low internal sync. γ fields -> PeV ν production inefficient?
- enhanced py efficiency via external γ fields in BL Lacs? sync. from sheath in structured jets log(E[`]vL_{E`}, [erg
- questions
- 1. hadronic emission?
- 2. role of external Compton?
- 3. yy absorption?
- 4. max proton energy (UHECR)?

jet-sheath (spine-layer) structure

- jet structure with slower sheath (layer) surrounding faster jet (spine)
 - -> supported by observations, numerical simulations
- synchrotron photons from sheath seen
 Doppler boosted in jet frame
 -> enhanced target γ for pγ ν production,
 EC emission

Tavecchio+ 14, 15 Righi & Tavecchio 17

model description

- emission region: cylindrical with radius R, length dR=R,

magnetic field B, Lorentz factor Γ_j , viewing angle θ_v

- electron distribution: broken power-law $E_{e,min}, E_{e,br}, E_{e,max}, s_1, s_2$
- proton distribution: power-law E_p^{-2} with exp. cutoff E_{pmax}
- photons from sheath with Lorentz factor Γ_s , broken power-law spectrum
- leptonic emission: synchrotron, SSC, EC

hadronic emission

follow Böttcher+ 13, Cerruti+ 15

 $\begin{array}{ll} p+\gamma_{LE}\rightarrow N+\pi^{0},\pi^{+-} & photo-meson\\ \pi^{+-}\rightarrow\mu^{+-}+\nu\rightarrow e^{+-}+3\nu & \pi^{0}\rightarrow 2\gamma\\ \mu^{+-}+B\rightarrow\mu^{+-}+\gamma & muon \ synchrotron\\ p+\gamma_{LE}\rightarrow p+e^{+}e^{-} & photo-pair \ (Bethe-Heitler)\\ \hline \gamma^{+}\gamma_{LE}\rightarrow e^{+}e^{-} & electron-positron\\ e^{+}e^{-}+B\rightarrow e^{+}e^{-}+\gamma & sync. \ cascade \end{array}$

Mannheim 93 Mücke+ 02,03 Aharonian 00...

 $p+B\rightarrow p+\gamma$ proton synchrotron

 \bar{v}_{μ}

γπ

EC robustly more beamed than SSC (or syn.) Dermer 95 for quasi-isotropic external photons

まとめ TXS 0506+056 / IC-170922A 電弱観測の解釈

- ~300 TeVのvがLATで明るいBL Lac TXS 0506+056と~3oで同定
- MAGICは1日以下の変動、*Γ*~-3.5-4.0のsteepなスペクトルを観測
- 現実的に期待されるジェットの多層(jet-sheath)構造を考慮し、 外層からのsync.光子をpγ targetと考える(+若干楽観的になる) ことで電弱観測を整合的に解釈可能
- 多波長放射はleptonic成分 (sync.+external Compton)が卓越 hadronic成分はsubdominant, X線 (+VHE)が重要な制限
- ~100 GeVのガンマ線breakはγγ吸収、~300 TeVのvのpy生成と無矛盾
- 陽子の最高エネルギーは原理的に~10¹⁸ eV (comoving) まで 可能だが、現観測からは判断できない(UHECR加速源かどうか?)
- 電弱天文学の幕開け(?):1イベントのvでも多くの新たな示唆

課題

- py v生成におけるexternal target photonの異方性の効果
- 他のブレーザーは? なぜHBL, FSRQでなくTXS 0506+056?
- 2014-2015(LATで明るくない期間中)のvフレアの起源
- diffuse fluxへの寄与

まとめ TXS 0506+056 / IC-170922A 電弱観測の解釈

- ~300 TeVのvがLATで明るいBL Lac TXS 0506+056と~3oで同定
- MAGICは1日以下の変動、*Γ*~-3.5-4.0のsteepなスペクトルを観測
- 現実的に期待されるジェットの多層(jet-sheath)構造を考慮し、 外層からのsync.光子をpγ targetと考える(+若干楽観的になる) ことで電弱観測を整合的に解釈可能
- 多波長放射はleptonic成分 (sync.+external Compton)が卓越 hadronic成分はsubdominant, X線 (+VHE)が重要な制限
- ~100 GeVのガンマ線breakはγγ吸収、~300 TeVのvのpy生成と無矛盾
- 陽子の最高エネルギーは原理的に~10¹⁸ eV (comoving) まで 可能だが、現観測からは判断できない(UHECR加速源かどうか?)
- 電弱天文学の幕開け(?):1イベントのvでも多くの新たな示唆

課題

- py v生成における external target photon の異方性の効果
- -他のブレーザーは?なぜHBL,FSRQでたくTYS 0506,056?
- 2014-2015(LATで明るくない期間中)のv 将来への期待:
- diffuse fluxへの寄与