高エネルギーニュートリノの起源天体

IS

Kohta Murase Penn State University

マルチメッセンジャー観測で迫る

天文学会 @ 兵庫県立大学

Multi-Messenger View of Cosmic Particle "Backgrounds"

Energy budgets are all comparable (10⁴³ -10⁴⁴ erg Mpc⁻³ yr⁻¹) e.g., KM & Fukugita 18

Diffuse Neutrino Intensity & Candidate Sources

7.5 year HE starting events 103 events (60 events > 60 TeV) best-fit: $s=2.87\pm0.3$

8 year upgoing v_{μ} "track" 36 events at >200 TeV (6.7 σ) best-fit: s=2.19 \pm 0.10

 $E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Fishing Neutrino Sources

- compatible w. isotropic distribution
- no significant clustering at >30 TeV
- some (fishy) sources? TXS 0506+056, PKS B-1424-41

What Have We Learned from the Neutrino Sky?

- Rare sources cannot be the dominant origin (n_s>10⁻⁷-10⁻⁶ Mpc⁻³)
- Most models can be tested by next-generation detectors (Gen2)

Fate of High-Energy Gamma Rays

$$\pi^0 \rightarrow \gamma + \gamma$$

 $p + \gamma \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 1:1 \rightarrow \mathbf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (4/3) \mathbf{E}_{\nu}^{2} \Phi_{\nu}$ $p + p \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 2:1 \rightarrow \mathbf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (2/3) \mathbf{E}_{\nu}^{2} \Phi_{\nu}$

>TeV γ rays interact with CMB & extragalactic background light (EBL)

$$\gamma + \gamma_{\text{CMB/EBL}} \rightarrow e^+ + e^-$$
 ex. $\lambda_{\gamma\gamma}(\text{TeV}) \sim 300 \text{ Mpc}$
 $\lambda_{\gamma\gamma}(\text{PeV}) \sim 10 \text{ kpc} \sim \text{distance to Gal. Center}$

Multi-Messenger Constraints on the >0.1 PeV v Origin

• Generic power-law spectrum $\epsilon Q_{\epsilon} \propto \epsilon^{2-s}$, transparent to GeV-TeV γ

s < 2.1-2.2 (for extragal.); insensitive to evolution & EBL models

- contribution to diffuse sub-TeV γ–ray bkg.: >30-40%
- s < 2.0 for nearly isotropic Galactic emission (e.g., Galactic halo)

New Component?: Medium-Energy "Excess"?

 10-100 TeV data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹ (best-fit spectral indices tend to be as soft as s~2.5-2.9)

Violation of Fermi diffuse γ -ray bkg. if v sources are γ -ray transparent

 \rightarrow "hidden neutrino sources (i.e. γ -ray attenuation)" In this talk we focus on general classes of >0.1 PeV neutrino sources

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30 \text{ PeV CR}$ nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-Ray Reservoirs

Grand-Unification of High-Energy Cosmic Particles?

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Diffuse Neutrino Intensity from GRBs

- Classical GRBs as the dominant origin: excluded by multimessenger obs.
 constrained by stacking analyses <~ 10⁻¹⁰ GeV cm⁻² s⁻¹ sr⁻¹
- Low-luminosity GRBs and choked-jet SNe: viable as the dominant sources

Photomeson Production in Blazars States and the states and KM, Inoue & Dermer 14 dust torus $\sim \sim \sim$ (IR) accretion disk (UV, X) $\sim \sim \sim$ neutrinos cosmic ray "beamed" broadline region blazar zone (opt, UV) (broadband) $\sim \sim \sim$ $E'_{\nu} \approx 0.05 E'_p \simeq 0.8 \text{ PeV } \Gamma_1^2 (E'_s/1 \text{ keV})^{-1}$ inner jet photons $\mathbf{p}\gamma \rightarrow \Delta^{+} \rightarrow \pi + \mathbf{N}$ $E'^{b}_{\nu} \approx 0.05 (0.5 m_{p} c^{2} \bar{\epsilon}_{\Delta} / E'_{\rm BL}) \simeq 0.78 \text{ PeV}$ broadline (UV) photons

 $E'^b_{\ \nu} \simeq 0.066 \text{ EeV}(T_{\text{IR}}/500 \text{ K})^{-1}$

dust torus (IR) photons

Diffuse Neutrino Intensity from Blazars

Blazars: if UHECR accelerators → promising EeV neutrino emitters

Diffuse Neutrino Intensity from Blazars

Blazars: if UHECR accelerators → promising EeV neutrino emitters IceCube 9-yr EHE analyses give a limit of <10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ at 10 PeV many existing models have been constrained

Can Blazars Explain the IceCube Data?

Challenging

- Cutoff or steepening around a few PeV seems required (e.g., stochastic acceleration? Dermer, KM & Inoue 14)
- The models give up the simultaneous explanation of UHECRs

Statistical Constraints on Blazar Contribution

γ-ray bright blazars are largely resolved
 -> stacking/cross-correlation analyses

- 2LAC: <7-27% of the diffuse v flux 2FHL: <4-6% of the diffuse v flux

Blazars are rare objects in the universe -> neutrino clustering/auto-correlation

 < 10% of the diffuse v flux at 100 TeV (but can be more at higher energies)

Caution!: unavoidable model dependence

Transient Sources & Blazar Flares

Good chances to detect them even if subdominant in the diffuse v sky (story is similar for GRBs!) 1. Observational reason: temporal & spatial coincidence 2. Theoretical reason "enhanced" jet power + target photons (see e.g., KM & Waxman 16, KM et al.18)

IceCube 170922A & TXS 0506+056

TXS 0506+056: Detailed Observations

- Swift-UVOT/X-Shooter, Swift-XRT/NuSTAR Fermi-LAT data
- UVOT/X-Shooter
 v_{syn}<3x10¹⁴ Hz: ISP/LSP
- X-ray observations reported by members of AMON
- Swift (Keivani et al.) GCN #21930, ATel #10942 NuSTAR (Fox et al.) ATel #10861

Emission Mechanisms

TXS 0506+056 SED Modeling: Hadronic

TXS 0506+056 SED Modeling: Leptonic

2014-2015 Neutrino Flare

If association is physical

 $E_{v} L_{Ev} \sim (3-10) \times 10^{46} \text{ erg/s}$

X-ray luminosity due to cascades by synchrotron from Bethe-Heitler pairs

$$\varepsilon_{\gamma} L_{\varepsilon_{\gamma}} |_{\varepsilon_{\text{syn}}^{\text{BH}}} \approx \frac{4g[\beta]}{3(1+Y_{\text{IC}})} \varepsilon_{\nu} L_{\varepsilon_{\nu}}$$

$$\stackrel{\text{BH}}{}_{\text{syn}} \simeq 6 \text{ keV } B'_{-0.5} (\varepsilon_p/6 \text{ PeV})^2 (20/\delta)$$

Single-zone models predict $F_x \sim 10^{-10} \text{ erg/cm}^2/\text{s}$ that violates the Swift-BAT limit

 \mathcal{E}_{i}

(KM, Oikinomou & Petropoulou 18 ApJ)

TXS 0506+056: Implications

No convincing picture (especially with the 2014-2015 v flare)

Single-zone models (either $p\gamma$ or pp models)

- Suggesting the leptonic γ -ray origin & disfavoring UHECR acceleration
- Real-time detection was lucky (lower-energy v were not detected)
- Challenging energetics (P_{cr} >> L_{Edd}), dark accelerator (L_p >>300 L_e)

cascades are crucial

How to avoid X-ray limits?
1. Anisotropic cascades

(isotropization & time delay)

2. Avoiding Bethe-Heitler by neutrons
3. Compton scattering of X rays

(requiring N_H>10²⁵ cm⁻²)

Neutron beam model? OR...

(KM, Oikinomou & Petropoulou 18 ApJ)

Other Neutrino Transients?

If TXS story is true we should see more blazar flares (up to 1 events/yr)

- Gen2/KM3Net: v alerts w. ~0.1 deg, AMON: v-γ, v-GW alerts

- UV/X-ray/MeV γ-ray monitoring is *critically important!!!*

Summary

Multi-messenger approaches are now critical for "v" questions

Origin of the diffuse neutrino intensity?

γ -ray flux ~ ν flux ~ CR flux

pp scenarios: s<2.1-2.2 & significant contribution to Fermi γ-ray bkg. cosmic particle unification is possible 10-100 TeV data are NOT explained by CR reservoirs pγ scenarios: 10-100 TeV data suggest hidden CR accelerators

Brightest neutrino sources including neutrino "transients"?

TXS 0506+056: encouraging, successful example of v-triggered campaigns cascade bounds: **X-ray flux** ~ v flux

No convincing picture: luck? multi-zone (ex. n-beam) models?, need more...

Future?

diffuse v origin: likely to be common sources, need for Gen2/KM3Net v transients: big potential due to time/space-coincidence, need more efforts...

Backup Slides

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30 \text{ PeV CR}$ nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

UHECR Sky: Unknown (but Hint?)

- No established source yet
- Tentative correlation? starbursts: ~4σ AGN: ~3σ TA hotspot: ~3σ
 - Dipole anisotropy established -> supporting extragalactic (Auger 17 Science)
- Spectrum: suppression at ~40 EeV can be explained by interactions with CMB during the propagation OR maximum energy at the sources
- Composition:
 heavier nuclei beyond the ankle?

High-Energy Neutrino Sky: Unknown

No established source yet (except fishy event)

- 7.5 year HE starting events 103 events (60 events > 60 TeV) best-fit: s=2.87±0.3
- 8-yr upgoing v_{μ} "track" 36 events at >200 TeV (6.7 σ) best-fit: s=2.19±0.10

Extragalactic Gamma-Ray Sky: Dominated by Blazars

48 months of observations :3LAC: 1563 sources1444 AGNs in the clean sample most of them are blazars

Blazar (point-source) contribution to extragalactic γ-ray background (EGB) 86%+16%-14% (Fermi 16 PRL) 68%+9%-8% (Lisanti+ 16 ApJ)

~15-30% of the EGB at > 50 GeV may come from something else (and more rooms at lower energies)

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple flat energy spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple flat energy spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Indication of Gamma-Ray Dark Cosmic-Ray Accelerators

• $\gamma\gamma \rightarrow e^+e^-$ inside the sources: unavoidable in $p\gamma$ sources

v sources naturally become obscured in GeV-TeV γ rays

GRBs and AGN as Hidden Neutrino Factories?

Low-power GRBs (choked jets)

Supermassive blackhole cores

Future Detectors

~10 km³ 120m→240m spacing

IceCube-Gen2

~1 km³ better angular resolution

Multiplet Searches

- N~100-1000 events are needed for 5σ discovery
- Angular resolution is important (confusion limit)
- Agree well w. analytical estimates by KM & Waxman 16

What's Next?: Need to Identify the Sources

Starbursts and radio galaxies are already detected by Fermi w. γ rays For pp scenarios, s<2.2 leads to strong predictions for Gen2/KM3Net

V=10 km³ & best ang. res.=0.1 deg & 5 yr obs. assumed

KM & Waxman 16 PRD

How about Galaxy Clusters?

Relevance of *y* rays for Testing CR Reservoir Models

- Fermi results $\rightarrow \gamma$ -ray spectra of pp sources should be hard (s<2.1-2.2)
- For a given complete catalogue, γ-ray searches are powerful
- Neutrino point-source candidates should be clearly seen in γ rays

CR Reservoirs

Starburst/Star-Forming Galaxies: Basics

High-surface density M82, NGC253: $\Sigma_g \sim 0.1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$ high-z MSG: $\Sigma_g \sim 0.1 \text{ g cm}^{-3} \rightarrow n \sim 10 \text{ cm}^{-3}$ submm gal. $\Sigma_q \sim 1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$

CR accelerators
 Supernovae, hypernovae, GRBs,
 Super-bubbles (multiple SNe)
 Galaxy mergers, AGN

SBG CR luminosity density $Q_{\rm cr} \sim 8.5 \times 10^{44} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} \rho_{\rm SFR,-3}$

(SFG CR energy budget ~ Milky Way CR budget is ~10 times larger)

advection time (Gal. wind) $t_{\rm esc} \approx t_{\rm adv} \approx h/V_w \simeq 3.1 \ {\rm Myr} \ (h/{\rm kpc}) V_{w,7.5}^{-1}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{esc} \simeq 1.1 \ \Sigma_{g,-1} V_{w,7.5}^{-1}(t_{esc}/t_{adv})$

 $E_{\nu}^{2} \Phi_{\nu_{i}} \sim 10^{-9} - 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Gamma-Ray Detection from Starbursts

Starbursts have been detected in GeV-TeV gamma rays

Luminosity Function & Calorimetry

Star-Forming/Starburst Galaxies, vs, ys

Starbursts can potentially explain v and γ simultaneously, but keep in mind

- Normalization is uncertain (L_{γ} - L_{IR} , uncertain AGN contribution)
- Spectral indices are uncertain (could be s_{SB}=2.0 at high energies)

Necessity of Super-Pevatrons

Our Galaxy's CR spectrum Knee at 3 PeV → neutrino knee at ~100 TeV

Normal supernovae (SNe) are not sufficient to explain >0.1 PeV data

Possible solutions

- 1. B fields amplified to ~ mG KM+ 13
- 2.Hypernovae (HNe) KM+ 13, Liu+ 14, Senno+ 15
- 3. Trans-relativistic supernovae gamma-ray bursts Dado & Dar 14, Wang+ 15
- 4. Type IIn/IIb supernovae

Zirakashvilli & Ptuskin 16

- 5. Super-bubbles
- 6. AGN disk-driven outflows Tamborra+ 14
- 7. Galaxy mergers Kashiyama & Meszaros 14, Yuan+ 18

Senno, Meszaros, KM, Baerwald & Rees 15 ApJ Xiao, Meszaros, KM & Dai 16 ApJ

Galaxy Groups and Clusters: Basics

- Intracluster gas density (known) n~10⁻⁴ cm⁻³, a fewx10⁻² cm⁻³ (center)
- CR accelerators AGN (~a few) "active" accretion shocks (massive clusters) galaxy/cluster mergers normal galaxies (~100-1000)

AGN jet luminosity density $Q_{\rm cr} \sim 3.2 \times 10^{46} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{j,45} \rho_{{\rm GC},-5}$

cluster luminosity density $Q_{\rm cr} \sim 1.0 \times 10^{47} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{{\rm ac},45.5} \rho_{{\rm GC},-5}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{int} \simeq 0.76 \times 10^{-2} \ g\bar{n}_{-4} (t_{int}/2 \ \text{Gyr})$

$$E_{\nu}^{2}\Phi_{\nu_{i}} \sim 10^{-9} - 10^{-8} \,\mathrm{GeV \, cm^{-2} \, s^{-1} \, sr^{-1}}$$

Gamma-Ray Limits on Galaxy Clusters

Issues:

- γ -ray limits from nearby clusters
- overshooting diffuse γ -ray bkg.
- radio constraints for massive clusters
- -> spectral indices cannot be steep accretion shock scenario is disfavored

γ rays from virial shocks have been constrained

- CR pressure:
 - < 1% of thermal pressure
- CR efficiency: < 15%
 - but see: Ackermann+ 16 ApJ Reiss+ 17

Gamma-Ray Limits on Galaxy Clusters

10⁻⁸

10⁻⁹

10⁻¹⁰

 10^{3}

OK

 10^{4}

10⁵

10⁷

E [GeV]

10⁸

10⁹

10⁶

10¹¹

10¹⁰

- radio constraints for massive clusters
- -> spectral indices cannot be steep accretion shock scenario is disfavored

AGN with Galaxy Clusters

- Maximum energy of CRs is expected to be high enough (if AGN are the sources of UHECRs)
- Gigantic! \rightarrow CR confinement is easy (E < eBR~10²¹ eV)

CR diffusion time $t_{\text{diff}} \approx (r_{\text{vir}}^2/6D) \simeq 1.6 \text{ Gyr } \varepsilon_{p,17}^{-1/3} B_{-6.5}^{1/3} (l_{\text{coh}}/30 \text{ kpc})^{-2/3} M_{15}^{2/3}$

 $n/d\ln M [h^3 Mpc^{-3}]$

 cluster mass function: known (low-mass clusters are important)

- AGN evolution: (1+z)³⁻⁴
- gas density: relatively known
 (β profile)
- \rightarrow reasonable predictions

galaxy clusters/groups

AGN

 $\rightarrow \pi \rightarrow v$,

A', p, n,

 $\rightarrow \pi \rightarrow \vee$,

O-ry

Unification of High-Energy Cosmic Particles?

GRBs and SNe

High-Energy Emission from Interacting SNe

kinetic energy \rightarrow thermal + non-thermal via shock

 $p + p \rightarrow N\pi + X$

$$\pi^{\pm} \rightarrow \nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e}(\overline{\nu}_{e}) + e^{\pm}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$

Neutrino Light Curve

 $t_{onset} \sim time leaving the star (typical) or breakout time (IIn) slowly declining light curve while pion production efficiency ~ 1$

Neutrino Fluence

Fluence for an integration time when S/B^{1/2} is maximal (determined by the time-dependent model due to atm. bkg.)

Prospects for Neutrino Detection

through-going muon events

Multi-Energy Neutrino View of the Next Galactic Supernova?

- Type II: ~100-1000 events of TeV v from the next Galactic SNe!!!
 ex. Betelgeuse: ~10³-3x10⁶ events!!!, Eta Carinae: ~10⁵-3x10⁶ events!!!
- SNe as "multi-messenger" & "multi-energy" neutrino source
- Real time obs. of CR ion acceleration
- Probes of neutrino physics (e.g., non-standard interactions)

How about Extragalactic SNe?

typical Type II-P, II-L/IIb: detection of extragalactic SNe is hard N ~ 0.01-0.1 (d/1 Mpc)⁻²

A single SN IIn is detectable up to ~10 Mpc

(KM+ 11 PRD, Petropoulou+ 17 MNRAS)

statistical search ex. stacking analysis auto-correlation analysis

Possible Neutrino Production Sites

Choked Jets as Hidden Neutrino Factories?

Choked Jets as Hidden Neutrino Factories?

Realistic Picture

Two pieces of important physics were overlooked

KM & loka 13 PRL

- 1. Ballistic jets inside stars \rightarrow collimation shock & collimated jet
- 2. CR acceleration at collisionless shocks \rightarrow inefficient at radiation-mediated shocks

Jet Propagation inside a Star

 Jet propagation has been understood (cannot be ignored) controlled by luminosity, duration, opening angle, and ρ(r)

ram pressure balance at jet head
 cocoon dynamics
 collimation shocks

(Bromberg+ 11 ApJ, Mizuta & loka 13 ApJ)

jet head radius

$$r_h \approx 8.0 \times 10^9 \text{ cm } t^{3/5} L_{j0,52}^{1/5} (\theta_j / 0.2)^{-4/5} \varrho_{a,4}^{-1/5}$$

cf. uncollimated shock

$$r_h \approx 2\Gamma_h^2 ct \simeq 2.3 \times 10^{13} \text{ cm} L_{0.52}^{1/2} \rho_{\text{ext}}^{-1/2} r_{\text{ext},13.5}^{-1} t_{1.5}$$

- Collimation is crucial for jets propagating in high-density environments
- Must be taken into account for neutrino emission from choked jets jet-stalling condition L < L_{JS}: change by many order of magnitudes

Limitation of Shock Acceleration

Collisionless shock

Radiation-mediated shock

SNe with Slow Jets (Failed GRBs)

If CRs carry $E_{CR}^{iso} \sim 0.5 \times 10^{53}$ erg (GRB) $\rightarrow \# \text{ of } \mu \text{s} \sim 0 \text{ events (due to radiation mediated shocks)}$

"Radiation Constraints" on Non-thermal Neutrino Production

Basic Picture

Story of high-energy neutrino production

- Internal shock scenario maybe CR acceleration (if collisionless) $p\gamma$ interactions in inner jets, pp interactions are inefficient $f_{pp} \lesssim \frac{\kappa_{pp}\sigma_{pp}}{\sigma_T} \approx 0.04$ target photons by collimation-shocked jet (w. screening) & inner jets adiabatic losses during the expansion of the emission region and will not interact w. stellar material (hot spot and cocoon)
- <u>Collimation shock scenario</u> possible CR acceleration (if collisionless)
 pγ interactions in collimation-shocked jets target photons by collimation-shocked jet little adiabatic losses due to the collimation and pp interactions should occur during the advection
- <u>Reverse shock scenario</u>
 CR acceleration is usually difficult
- <u>Forward shock scenario</u> No CR acceleration (collisional)

Examples of Neutrino Spectra for Choked Jets

- Low-luminosity (LL) & ultra-long (UL) GRB jets are largely missed
- Compatible w. IceCube v data without violating stacking limits (by introducing contributions from choked jets)
- Non-detection of vs from GRBs already supports radiation constraints (If v production occurred inside a star for HL GRBs, we could detect them)
Type Ibc Supernovae & Low-Luminosity GRBs

Senno, KM & Meszaros 16 PRD

 Trans-relativistic SNe such as may come from shock breakout

(Campana+ 07, Waxman+ 07)

Successful or failed?

(Toma+07, Nakar 15, Irwin & Chevalier 16)

 They could significantly contribute to the IceCube flux (stacking limits on canonical GRBs are not applied)

Name	Max Mag (MJD)	RA (rad)	Dec (rad)	$D_L({ m Mpc})$	Type
SN2011ep	55750.5	4.47	0.57	1490	Ic
PTF11ixk	55765.5	3.50	0.55	95	Ic
PTF11izq	55767.5	3.61	0.70	289	Ib
PTF11ilr	55771.5	6.05	0.27		Ib
SN2011ee	55773.5	6.14	0.15	137	Ic
PTF11kaa	55775.5	4.57	0.82	184	Ib
SN2011gd	55790.5	4.34	0.38	44	Ib
PTF11klg	55810.5	5.79	0.11	120	Ic
PFT11kmb	55820.5	5.86	0.63	77	Ib-Ca
SN2011fl	55829.5	0.21	0.49	71	Ib
SN2011ft	55829.5	4.68	0.51	78	Ib
SN2011gh	55829.5	1.97	0.45	85	Ib
PFT11qcj	55866.5	3.46	0.83	127	Ib
SN2011fz	55888.5	6.01	0.04	73	Ib
LSQ11jw	55909.5	0.54.	0.01	90	Ic
SN2011jm	55918.5	3.38	0.05	14	Ic
SN2011it	55919.5	5.77	0.55	72	Ic
SN2011kf	55925.5	3.83	0.29	1280	Ic
SN2012C	55939.5	2.52	0.57	65	Ic
SN2012F	55930.5	0.15	0.07	137	Ib
SN2011kg	55937.5	0.44	0.52	976	SLSN-I
SN2012il	55941.5	2.56	0.35	878	SLSN-I
SN2012aa	55954.5	3.89	-0.04	376	Ic
SN2012ap	55975.5	1.31	-0.05	55	Ic BL
PTF12bwq	56007.5	3.61	0.44	184	Ib
PS1-12sk	56013.5	2.29	0.75	251	Ibn
LSQ12bph	56017.5	4.13	0.4	207	Ic
SN2012bw	56039.5	4.25	0.57	141	Ic
PTF12cde	56068.5	3.66	0.63	56	Ib/c

29 lbc SNe (Open SN catalog)

 Limited number of SN lbc samples because only 1 year data are public for through-going v

• We need more data on SNe & neutrinos

Type Ibc Stacking

Senno, KM & Meszaros 18 JCAP

- Consistent w. no correlation: E_{cr}<10⁵¹-10⁵² erg
- Will be updated by the IceCube Collaboration

Another Idea: Neutrino Follow-Up

Neutrinos are not attenuated: Rare SN ransients can be found (ex. KM et al. 06 ApJL)

A few (even ~1) neutrinos can tell us where the source is

Neutrino detection ↓ EHE localization (~0.2-0.8 deg)

HESE localization (~2-9 deg)

follow up observations AS SOON AS POSSIBLE for transients

Example of Multiplet Follow-Up: PTF12csy

Astrophysical Multi-Messenger Observatory Network (AMON)

AGN

Active Galactic Nuclei & Diversity

Extragalactic Gamma-Ray Sky Dominated by Blazars

Digging Sub-Threshold Sources

Data-driven approach pixel-photon count distribution

profile-based fitting

source-count distribution

(# used in X-ray astronomy)

Energy Budget & Redshift Evolution

Stacking Constraints on Blazars?

 γ -ray bright blazars are largely resolved -> stacking analyses are powerful

All 2LAC, FSRQ 3LAC, HBL 2FHL catalogues
2LAC: blazar contribution < 7-27 % of the diffuse neutrino flux
2FHL: blazar contribution < 4-6 % of the diffuse neutrino flux
some model-dependence (e.g., spectral templates)
Important for theoretically-predicted luminosity relationships: L_v ∝ L_y - L_y²

(ex. Palladino, Rodrigues, Gao & Winter 18)

Multiplet & Auto-Correlation Constraints?

Blazars are rare objects in Universe -> search for event clustering is powerful

1. No more than one source of high-energy (E_{μ} >30-50 TeV) "multiplets"

 $N_s = b_{m,L} \left(\frac{\Delta\Omega}{3}\right) n_0^{\rm eff} d_{\rm lim}^3 < 1 \quad \begin{array}{l} {\rm d}_{\rm lim} : \mbox{ horizon for a source with L} \\ {\rm b}_{\rm m,L} : \mbox{ depends on analysis details} \end{array}$

"upper" limits $n_0 < 10^{-7}-10^{-6} Mpc^{-3} (L_v/10^{42} erg/s)^{-3/2}$

(Lipari 08, KM+ 12, Kowalski 14, Ahlers& Halzen 14, KM & Waxman 16, Ando+ 17, IceCube Collaboration 1807.11492 etc.)

2. IceCube flux ($E_v^2 \Phi_v \sim 3x10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹) tells us the v energy generation rate

 $n_0 L_v \sim 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ (for no redshift evolution)

3. Lower limits can be placed from the information 1+2

"lower" limits $n_0 > 10^{-5} - 10^{-6} Mpc^{-3}$

auto-corr. E⁴C_P<4x10⁻¹⁹ GeV cm⁻² s⁻² s⁻¹ -> similar limits within one order of magnitude

<~ 10% of the IceCube flux at 0.1 PeV (and more at higher energies)

some model-dependence (e.g., spectral templates)
relevant for weaker redshift evolution (complementary to stacking limits)

Multiplet & Auto-Correlation Constraints?

Blazars are rare objects in Universe -> search for event clustering is powerful

(Lipari 08, KM+ 12, Kowalski 14, Ahlers& Halzen 14, KM & Waxman 16, Ando+ 17, IceCube Collaboration 1807.11492 etc.)

<~ 10% of the IceCube flux at 0.1 PeV (and more at higher energies)

some model-dependence (e.g., spectral templates)
relevant for weaker redshift evolution (complementary to stacking limits)

Blazars: Success of Multiwavelength Observations

Spectral energy distribution (SED): typically "two hump" structure

Leptonic Scenario

Broadband HE radiation: relativistic electrons accelerated in magnetized jets

- LE hump = synchrotron emission
- HE hump = synchrotron self-Compton (SSC) or external inverse-Compton (EIC)

- Basic tool: one-zone syn./SSC model w. syn. self-absorption and internal $\gamma\gamma$

• For EIC: bloadline regions (BLR), dust torus, (scattered) accretion disk

(Lepto-)Hadronic Scenario?

- Low-energy hump: synchrotron radiation from primary e
- High-energy hump:1. proton and ion synchrotron radiation
 - $p+B \rightarrow p+\gamma$
 - 2. proton-induced cascades $p+\gamma \rightarrow p/n, \ \pi \rightarrow p/n, \ \nu, \ \gamma, e$

"SEDs can usually be fitted by both leptonic and leptohadronic scenarios" common problems:

- large CR power is often necessary
 - $(L_{cr} > L_{Edd}, \epsilon_p > 100-1000\epsilon_e)$
- more free parameters

smoking gun? -> neutrinos!

Open Questions

Source physics

- Gamma-ray origin: leptonic vs hadronic?
- CR acceleration process & magnetic fields?
- Jet properties (total power composition etc.)
- What can we learn about engines (jet-disk connection)?
- Origins of extragalactic background emissions
- Can AGN jets be the dominant origin of UHECRs?
- Can be blazars be the dominant origin of HE neutrinos?
- Interplay of BL Lacs, FSRQs, FR I galaxies & FR galaxies etc.?

Ions? Maximum CR Energy

~10% of AGN have powerful jets: "radio-loud AGN" ~0.1-1% of them are FR II galaxies and FSRQs (on-axis)

Hillas condition: $E_A^{max}=ZeB'\Gamma R'$ $E^{max} < Z10^{19} eV$ for FSRQs nearby FR I & blazars seen by Fermi p_γ/A_γ losses are very important

ID	Source	dL	$E_A^{\max{(t)}}/Z[10^{19}]$
		[Mpc]	[eV]
1	CenA(core)	3.7	0.004-3.3
2	M87	16.7	0.040
3	NGC1275	75.3	4.6
4	NGC6251	104	0.27
5	Mrk421	130.0	0.29
6	Mrk501 (h. ^(g) ,1997)	146.0	0.17-1.5
7	Mrk501 (1. ^(g) ,1997)	146.0	0.28-1.5
8	Mrk501 (1. ^(g) ,2007)	146.0	0.2
9	Mrk501 (1. ^(g) ,2009)	146.0	0.12-0.6
10	1ES1959+650(h. ^(g))	206	0.12-2.9
11	1ES1959+650(1. ^(g))	206	1.3
12	PKS2200+420/BL Lac	307.0	1.1
13	PKS2005-489	316.0	3.1
14	WComae	464.0	0.37-0.57
15	PKS2155-304	533.0	0.23

KM, Dermer, Takami, & Migliori 2012 ApJ

FSRQs cannot be 10²⁰ eV nuclei sources

Ions? Maximum CR Energy

~10% of AGN have powerful jets: "radio-loud AGN" Most of them are FR I galaxies and BL Lacs (on-axis)

Hillas condition: $E_A^{max}=ZeB'\Gamma R'$ $E^{max} \sim Zx(10^{18}-10^{19}) eV$ for BL Lacs nearby FR I & blazars seen by Fermi $p\gamma/A\gamma$ losses are irrelevant

ID	Source	dL	$E_A^{\max{(t)}}/Z[10^{19}]$
		[Mpc]	[eV]
1	CenA(core)	3.7	0.004-3.3
2	M87	16.7	0.040
3	NGC1275	75.3	4.6
4	NGC6251	104	0.27
5	Mrk421	130.0	0.29
6	Mrk501 (h. ^(g) ,1997)	146.0	0.17-1.5
7	Mrk501 (1. ^(g) ,1997)	146.0	0.28-1.5
8	Mrk501 (1. ^(g) ,2007)	146.0	0.2
9	Mrk501 (1. ^(g) ,2009)	146.0	0.12-0.6
10	1ES1959+650(h. ^(g))	206	0.12-2.9
11	1ES1959+650(1. ^(g))	206	1.3
12	PKS2200+420/BL Lac	307.0	1.1
13	PKS2005-489	316.0	3.1
14	WComae	464.0	0.37-0.57
15	PKS2155-304	533.0	0.23

KM, Dermer, Takami, & Migliori 2012 ApJ

BL Lacs could be 10²⁰ eV nuclei sources

Proton Maximum Energy?

Some AGN have powerful jets: "radio-loud AGN" On-axis objects are called "blazars = BL Lacs + FSRQs"

Such consideration is now possible thanks to the multi-wavelength data

Neutrino SEDs

 $\mathbf{f}_{p\gamma} \sim \mathbf{n}_{\gamma}(\kappa_{p}\sigma_{p\gamma})(\Gamma c \delta t)$ (positive luminosity weight)

interactions w. internal radiation field (Δ -res.+direct prod.)

$$f_{p\gamma}(E'_p) \simeq 7.8 \times 10^{-4} L^s_{\mathrm{rad},45} \Gamma_1^{-4} \delta t'_5^{-1} (E'_s/10 \text{ eV})^{-1} \begin{cases} (E'_\nu/E'^b_\nu)^{\beta_h - 1} \\ (E'_\nu/E'^b_\nu)^{\beta_l - 1} \end{cases}$$

interactions w. external radiation fields (Δ -res.+multi-pion)

$$f_{p\gamma} \approx \hat{n}_{\rm BL} \sigma_{p\gamma}^{\rm eff} r_{\rm BLR} \simeq 5.4 \times 10^{-2} f_{\rm cov,-1} L_{\rm AD,46.5}^{1/2}$$

 $f_{p\gamma} \simeq 0.89 L_{\rm AD,46.5}^{1/2} (T_{\rm IR}/500 \text{ K})^{-1}$ independent of Γ

Blazars as Powerful EeV v Sources

- FSRQs: efficient ν production, UHECRs largely destroyed
- BL Lac objects: less efficient v production, UHE nuclei survive

- PeV-EeV v: py w. BLR & dust-torus photons \rightarrow unique shape
- Strong prediction: cross-correlation w. known <100 bright quasars
- UHECR norm. \rightarrow lower than the IceCube flux but EeV ν detectable

Neutron Beam Model for Two Flares of TXS 0506+056

- 1. CR neutrons are produced in the blob by e.g., disintegration of nuclei
- Neutrinos are produced in the extended region via np or nγ interactions Gamma-ray emission in the GeV range is mostly leptonic (Keivani, KM+ 18) Associated hadronic cascades are "triply" suppressed in the X-ray range

In principle, this model can explain both 2017 and 2014-2015 flares with the single picture as a natural extension of the single-zone modeling ($R_{ext} \sim$ typical scale of the collimation shock and giant molecular clouds)

$$\varepsilon_{\nu}L_{\varepsilon_{\nu}} \simeq 3.8 \times 10^{46} \text{ erg s}^{-1} \left(\frac{2K}{1+K}\right) \left(\frac{f_{n\gamma/np}\varepsilon_n L_{\varepsilon_n}}{10^{47} \text{ erg s}^{-1}}\right)$$

 $L_n^{\rm fl} \simeq 3.0 \times 10^{49} \ {\rm erg \ s^{-1}} \ f_{A\gamma} (\theta_{\rm beam}/0.05)^{-2} (\epsilon_{\rm cr}/0.2) (b_{\rm fl} f_{\rm fl}^{-1}/10) \ (P_j/0.3 L_{\rm Edd}) (M_{\rm BH}/10^9 \ M_{\odot})$

- 2017 flare

CR beam production occurs at large radii such that $\tau_{\gamma\gamma}$ <1 (v– γ flare) ex. $f_{A\gamma} \sim 0.1 \rightarrow$ real-time $N_{\nu} \sim 0.1 \text{ yr}^{-1}$ & point-source $N_{\nu} \sim 1 \text{ yr}^{-1}$

- 2014-2015 flare CR beam production occurs at small radii such that $\tau_{\gamma\gamma}$ >1 (orphan flare) ex. $f_{A\gamma}$ >~ 1 \rightarrow point-source N_v ~ 10 yr⁻¹ KM, Oikinomou & Petropoulou 18 ApJ

Issues in Jet-Cloud Models

Neutrinos could be produced by pp interactions if jet-cloud collisions occur

- Isotropization problem unavoidable for the system w. the CR beam & non-relativistic target
 - jets must form a relativistic shock with dense clouds
 - magnetic fields: Γ B ~ Γ 10³(R_s/R) G ~ 10 G at 10¹⁷ cm for Γ ~10
 - $r_L << R \rightarrow CR$ ions must be isotropized

serious energetics issue! (but n-beam model can overcome this issue)

- Heavy-jet problem unavoidable if pp interactions occur inside the relativistic jet
 required luminosity largely exceeds the Eddington luminosity
- Origin? ad hoc: stars may be OK but stellar clusters or BLR clouds are speculative
- Survival?

jet-cloud interactions easily cease (pushed by the jet or crossing the jet)

Particle Acceleration in AGN Jets?

Hillas condition: $E_{max} \sim ZeBr\Gamma \sim 3x10^{19} \text{ eV Z} (\Gamma/10) (B/0.1 \text{ G}) (r/10^{17} \text{ cm})$

Example: Shear Acceleration at Kpc Scale Jets

70

10└─ 18.0

18.5

19.0

 $\log_{10}(E/eV)$

19.5

20.0

20.5

cm 60 60,50

- High abundance of nuclei is challenging
- Re-acceleration of "galactic" CRs by AGN jets Re-acceleration of "galactic" CRs by AGN jets shear acc. (ex. Stawarz & Ostrowski), one-shot acc. (Gallant & Achterberg) $\overset{40}{\swarrow}_{5}^{20}$

Neutrino Emission from Cores of Active Galactic Nuclei

 $\log(E_{v} [GeV])$

Fate of Beamed Cosmic Rays

UHECR beams should be "isotropized" by many reasons

- No blazars within the GZK horizon (~100 Mpc)
- structured extragalactic magnetic fields (clusters: ~1-10 μ G, filament: ~10-100 nG) (KM et al. 12 ApJ)
- radio bubbles/lobes of AGN (~ 1-10 μ G) (Dermer et al. 09, Fang & KM 18)
- These magnetic fields also affect the observed CR spectra

"Isotropy" Constraints

Takami, Murase & Dermer 16 ApJ

No small-scale anisotropy $\rightarrow n_s > 10^{-4}-10^{-3}$ Mpc⁻³ at 10¹⁹ eV No powerful UHECR emitters -> support "isotropization"

Possible Hardening in Weakly Variable Blazars?

Extreme VHE Blazars: Challenge?

De-absorbed spectrum is as hard as s~1-1.5 Almost mono-energetic electron distribution is needed Suggested values of B seem much smaller (e.g., Tavechhio+ 11)

Have been used to constrain intergalactic fields in voids Cascade component appear as a GeV excess? (e.g., Vovk+ 12)

Intergalactic Cascade Emission?

Alternative explanation for gamma rays from blazars: neutrino and hadronic gamma-ray production *outside* sources

Smoking Gun: High-Energy Tail of Distant Blazars

- go to higher energies and/or higher redshifts (\rightarrow CTA) - weak variability $\Delta t_{IGV} \simeq 14 \text{ yr } E_{\nu,11}^{-2} B_{IGV,-17}^2 (\lambda_{BH}/\text{Gpc})(1+z)^{-1}$ Can UHECR be the Main Origin of Isotropic Diffuse Gamma-Ray Background

Cosmogenic γ can contribute to diffuse γ -ray background Steeper than spectra of preliminary Fermi data

Variable Hadronic Cascade Emission: UHE Neutral Beams

Application to Blazars

Accretion Disk

FSRQ 4C+21.35 (z=0.432) >30 GeV γ rays (made inside BLR) are damped (e⁻³⁰~10⁻¹³) but fast variability w. ~10 min (Tanaka+ 11, MAGIC Coll. +11)

"a very compact emission region outside BLR"

R'~10¹⁵ (Γ/100) cm << 10¹⁷ cm

Alternative explanations:

 Minute-scale echo produced by UHE neutral beams

(Dermer, KM & Takami 12)

- Axion-like particles

(Tavecchio+ 12)

Dermer, KM & Takami 12