

IC170922Aから始まるマルチメッセンジャー天文学

石原 安野 for the IceCube collaboration

日本天文学会@姫路 September 19, 2018

Neutrino as a cosmic messenger

Weak interaction during "propagation"

- Penetration power
- Pointing capability

Fill the Gap: Multi-messenger astronomy

Neutrino Telescopes

Neutrino Telescopes need to be large

- Benchmark 1km³ scale for a few neutrino events/year expected from observed CR energy densities
- Natural photon-transparent materials as neutrino beam dumping and as Cherenkov medium

Neutrino Telescopes

http://icecube.wisc.edu

🔭 AUSTRALIA University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

CANADA SNOLAB

University of Alberta-Edmonton

DENMARK University of Copenhagen

GERMANY

FUNDING AGENCIES

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt–Universität zu Berlin Ruhr-Universität Bochum RWTH Aachen University Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

THE ICECUBE COLLABORATION

JAPAN **Chiba University**

NEW ZEALAND University of Canterbury

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms universitet Uppsala universitet

SWITZERLAND Université de Genève UNITED KINGDOM University of Oxford

UNITED STATES

Clark Atlanta University Drexel University Georgia Institute of Technology Lawrence Berkeley National Lab Marguette University Massachusetts Institute of Technology Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines and Technology

Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of California, Los Angeles University of Delaware University of Kansas University of Maryland University of Rochester

University of Texas at Arlington University of Wisconsin–Madison University of Wisconsin–River Falls Yale University

CECUBE

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) The Swedish Research Council (VR) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Detection Principle

Array of photomultiplier tubes in a dark transparent material

IceCube Flavor Identifications

Tracks: induced by v_{μ} CC interaction

Angular resolution

Moon shadow of cosmic ray muons using one year of data

(cosmic-ray primaries get absorbed in moon)

Background dependent on the directions in the sky

- Southern sky: High energy atm muon BG (signal PeV-EeV)
- Northern sky: Atm neutrino BG (signal TeV-PeV)

Large energy resolution for through going-muon as muon loose energy before arrival

 Δlog(E)~0.3 for muon energy deposit to muon energy

Energy Range for IceCube/DeepCore

Icecube can measure 10GeV – 10¹¹GeV neutrinos !

Astrophysical Diffuse Neutrino Flux

Upward going muon* neutrino sample (8 years/2009-2016)

*Select muon induced by muon neutrino CC interactions

High energy starting event** neutrino sample (7.5 years/2010-2017)

**Select neutrino events with outer layer detector as muon veto

Best Fit Estimate with Independent Samples

Best single power-law fit results

$$\Phi_{
m astro} = \Phi_0 \left(rac{E}{E_0}
ight)^-$$

Good agreements of independent astrophysical neutrino samples above 200TeV

 γ

Detailed consistency studies on <200TeV still on going

The PeV Universe

Highest energy event to date, an upward-going track.

- Deposited energy 2.6±0.3 PeV
- Median neutrino energy 8.7 PeV
- Observed photoelectrons 130,000 pe

 6.0 ± 0.3 PeV cascade events Well compatible with Glashow resonance! Systematic studies ongoing

No clustering observed in starting events

Neither in upward-muon sample

Upperlimits from 7 year point source search

Unsocial Neutrino Unites UHE sky

Simple hadronic "creation"

- Ingredients
 - pp or p γ interaction
- $p + \gamma \rightarrow p + n + \pi^0 + \pi^+ + \dots$
 - cosmic-ray and target spectra in source

Directly accompanying partners

- gamma-ray from **neutral pions** (π^0)
- parent cosmic-rays (p, nuclei)

 $p + p \rightarrow p + p + \pi^{0} + \pi^{+} + \pi^{-} + \dots$

Indirectly accompanying partners

- radio, optical, x-ray...
- gravitational waves
- Multi-messenger!

Multi-messenger Connection?

Blazer stacking analysis with 3year IC data

blazar contribution

- The equal-weighting upper limit results in a maximally19%-27% contribution of the total 2LAC blazar sample to the astrophysical neutrino flux
- Sub dominant contribution still possible

Gamma-ray burst contributions

IceCube arXive1412.6510

Temporal and direcitional correated events with 502 bursts from Fermi GBM catalogs

No significantly correlated neutrino events with GRB in 4 years of IceCube data

generic doubly broken power-law model

$$\Phi_{\nu}(E) = \Phi_0 \cdot \begin{cases} E^{-1} \varepsilon_b^{-1} & E < \varepsilon_b, \\ E^{-2} & \varepsilon_b \le E < 10 \varepsilon_b, \\ E^{-4} (10 \varepsilon_b)^2 & 10 \varepsilon_b \le E. \end{cases}$$

contribute no more than 1% of the observed diffuse flux

Neutrino Online Alert System

IceCube-170922A event

- 2017/9/22 20:54:30.43 UTC
- 5th and the most cosmic neutrino signal like EHE alert
- automated alert was distributed to observers just 43 seconds later

Science

IceCube-170922A Follow up

1.5

1.0

0.0

 10^{1}

Probability Density

Neutrino Energy (TeV)

HE gamma-ray observations

 Fermi-LAT(20MeV - 300 GeV) reported gamma-ray flaring blazer TXS 0506+056 (ATel#10791)

VHE gamma-ray observations

 Furthermore TXS 0506+056 was observed VHE gamma-ray Magic telescope (E > 100GeV) with >6.2σ (ATel#10817)

A successful Multiwavelength Campaign with v!

- Double-bump feature
- Neutrino flux upper limits to produce 1 detection
 - 1.8x10⁻¹⁰ erg cm⁻² s⁻¹ over 0.5yr
 - 1.2x10⁻¹¹ erg cm⁻² s⁻¹ over 7.5yr
- (Paiano et al. 2018) the 10.4m Gran Telescopio Canarias, an optical spectroscopy ⇒ z = 0.3365 +/-0.0010
- γ-luminosity between 100MeV and 100GeV
 - $\sim 1.7 \times 10^{47}$ erg s⁻¹ at high state
 - ~3.7x10⁴⁶ erg s⁻¹ at all time average

Correlation Analysis: Materials

ν - γ Correlation Analysis

Objects Shining with Neutrinos (so Far)

Sun

Earth

typical geo-neutrino energy <4MeV

Distance to the object 0 light years

typical neutrino energy <20MeV

Distance to the object 0.00001581 light years (149,600,000km)

supernova

typical neutrino

Distance to the object

160,000 light years

energy

<100MeV

active galactic nuclei (blazar)

likely neutrino energy >100,000,000MeV

Distance to the object 4,000,000,000 light years

Distance from the Earth to Galactic center 28,000 light years

Future: IceCube-Gen2 Facility

31

• Surface array muon veto • CR physics Main array Radio array $-\approx 100$ strings cosmogenic neutrino $-\approx 100$ sensors/string neutrino >10 PeV See the next talk – ≈240m distance **Dense array** - 26 strings — 125-192 sensors/string – ≈25m distance Initial step toward the realization of IceCube-Gen2 has started as the IceCube Gen2 Phase-1! (Official approval from NSF, the last week)

IceCube to Gen2: Point source sensitivity

Gen2 Baseline performance with default sensors

• Detector effective muon area $-x_4 \sim 5$ (horizontal)

default factors gives a factor of 5 better sensitivity

- angular resolution $-x \sim 0.45$ (horizontal)
- Further signal/bg improvements with new optical sensors (*cascade and muon reconstruction quality and BG reduction, detector/ice systematics*) are important!

IceCube-Gen2 Phase-1

Ice Systematic Challenge with Phase-1

Cascade channel is complementary to upward muon track channel

- Good energy resolution of ~10%
- Directional resolution is ~10° (ice systematic dominant)
- Less atmospheric neutrino background
 - lower energy threshold (10TeV 100TeV)
- Sensitive to full sky

密に埋めた光子伝搬較正装置による、系統誤差の低減により カスケード事象の角度分解能を向上!

Conclusions and Outlook

- IceCube sees neutrino beams created in the atmosphere and the far Universe
- IceCube has discovered high energy cosmic neutrinos
- 3σ observation of the first cosmic neutrino and flaring blazer coincidence with multi-messenger techniques
- The ongoing IceCube-Upgrade followed by IceCube-Gen2 construction will significantly improve the performance
- More events more sources!

Beyond PeV Universe: GZK Neutrinos?

IceCube (2018) Phys Rev D accepted

GZK neutrino unobserved in 9 years of IceCube data

- Strong constraints on sources of proton dominant UHECRs
- Mildly evolving (e.g. star formation rate) models disfavored

IceCube is sensitive to cosmic neutrinos from O(10TeV) to O(10,000,000TeV)

High energy neutrino signal channels

Tracks for better resolution

Rates and resolutions

Private alerts for specific telescopes: low energy threshold, more background rates

Alert	Event type	Coverage	thres E [TeV]	Median Ang Res [deg]	Time window	Alert rate Sig+BG/yr
GFU	$ u_{\mu}$ track multiplets	All sky	~ 0.1	<1	variable, max 21d	∼2BGs
O(X)FU	up $ u_{\mu}$ track multiplets	Northern sky	~ 0.1	<1	100s	Varies

« Public » aleart channels

« Public » aleart history

• From April (May) 2016 to the end of 2017: 6 EHE alerts and 8 HESE alerts with 1 overlapping event

AMON ICECUBE_EHE EVENTS – Since June 2016 archived at <u>https://gcn.gsfc.nasa.gov/amon_ehe_events.html</u>						
EventNum_RunNum	Date	Time UT	RA	Dec	Error(arcmin)	Signalness
17569642 130214	17/11/06	20:54:30.43	340.2500	+7.3140	14.99	0.74593
50579430_130033	17/09/22	18:39:39.21	77.2853	+5.7517	14.99	0.56507
80305071_129307	17/03/21	07:32:20.69	98.3268	-14.4861	19.48	0.2801
80127519_128906	16/12/10	20:06:40.31	46.5799	+14.9800	60.00	0.49023
26552458 128311	16/08/06	12:21:33.00	122.7980	-0.7331	6.67	0.28016
6888376_128290	16/07/31	01:55:04.00	214.5440	-0.3347	20.99	0.84879

AMON ICECUBE_HESE EVENTS – Since April 2016 archived at https://gcn.gsfc.nasa.gov/amon_hese_events.html								
EventNum_RunNum	Date	Time UT	RA	Dec	Error	Charge	SignalTr	
<u>34032434_130171</u>	17/10/28	08:28:14.81	275.0760	+34.5011	534.0	6317.82	0.30	8
<u>56068624_130126</u>	17/10/15	1:34:30.06	162.5790	-15.8611	73.79	13906.14	0.51	7
<u>32674593 129474</u>	17/05/06	12:36:55.80	221.6750	-26.0359	73.79	8685.07	0.35	6
<u>65274589_129281</u>	17/03/12	13:49:39.83	304.7300	-26.2380	73.79	8858.64	0.78	5
<u>38561326_128672</u>	16/11/03	09:07:31.12	40.8252	+12.5592	66.00	7546.05	0.30	4
<u>58537957_128340</u>	16/08/14	21:45:54.00	199.3100	-32.0165	89.39	10431.02	0.12	3
 <u>6888376_128290</u>	16/07/31	01:55:04.00	215.1090	-0.4581	73.79	15814.74	0.91	2
67093193_127853	16/04/27	05:52:32.00	240.5683	+9.3417	35.99	18883.62	0.92	1

Independent point source analysis around TXS 0506-05 (RA 77.36° Dec +5.69° • $L = \prod_{i=1}^{N} \left(\frac{n_s}{N} P_s + \frac{n_b}{N} P_B \right)$ • $P_S = Spacial(\vec{x}) \times Energy(E_{reco}, \sin \theta) \times Temporal(t)$ 2D Gaussian θ -dependent acceptance x power-law signal flux parameters: spectral index and normalization square and Gaussian parameters: center time and time window IC86b IC40 IC59IC79 IC86a IC86c p-values from scrambled data IceCube-170922A corrected look-elsewhere effect Gaussian Analysis Box-shaped Analysis 3 44 201120122013201420152016201720092010

 $-\log_{10} p$

Time dependent LLH point source analysis around TXS 0506+56 (neutrino only analysis)

- Signal(n_s, γ, T_0, T_W)+BG vs BG only
- Best fit ($n_s = 13.3, \gamma = 2.1, T_0, = 2014$ Dec 13, $T_W = 110 days$)
- $p = 1.0 \times 10^{-4}$, corresponds to 3.7σ (3.5σ after livetime correction)

(May be) the first observation of multiple neutrino emitting source

 $\Phi = \Phi_{100} (E/100 \,\mathrm{TeV})^{-\gamma}$

 $\Phi_{100} = 1.6 \times 10^{-15} \ TeV^{-1}cm^{-2} \ s^{-1}$ $\gamma = 2.1$

The analysis around the TXS object

Blazer coincidence analysis: classification

"two-hump" Spectral Energy distribution

Optical: FSRQs vs BL Lacs
 SED (synchrotoron-peaked)

□ Radio: FR1 vs FR2

- LSP low-synchrotron peaked >10¹⁴Hz IR-optical⁵
 - HSP high-synchrotron peaked >10¹⁵Hz x-rays
- ISP intermediate UV

Essentially all FSRQs are LSPs

Neutrino weighting $\ln(L)\{n_{s},\Gamma_{SI}\} = \sum_{i=1}^{N} \ln\left(\frac{n_{s}}{N} \cdot S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI}) + \left(1 - \frac{n_{s}}{N}\right) \cdot B(\cos(\theta_{i}), \varepsilon_{i})\right)$ $\text{the normalization ns of the signal contribution}} \qquad \text{signal hypothesis PDF} \qquad \text{BG is from} \\ S(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI}) \\ = \frac{\sum_{j=1}^{N_{src}} w_{j} \cdot S_{j}(\delta_{i}, RA_{i}, \sigma_{i}, \varepsilon_{i}; \Gamma_{SI})}{\sum_{j=1}^{N_{src}} w_{j}} \qquad B(\cos(\theta_{i}), \varepsilon_{i}) = \frac{1}{2\pi} \cdot f(\cos(\theta_{i}), \varepsilon_{i})$ $w_{j} = C w_{j,model} \cdot w_{j,acceptance}$

hypothesis test results

Population	p-value			
ropulation	γ -weighting	equal weighting		
All 2LAC blazars	$36\% (+0.4\sigma)$	$6\% (+1.6\sigma)$		
FSRQs	$34\% (+0.4\sigma)$	$34\% (+0.4\sigma)$		
LSPs	$36\% (+0.4\sigma)$	$28\% (+0.6\sigma)$		
ISP/HSPs	> 50%	$11\% (+1.2\sigma)$		
LSP-BL Lacs	$13\% (+1.1\sigma)$	$7\% (+1.5\sigma)$		

	neutrino luminosity is proportional to gamma- ray luminosity
All sources are equal $(w_{model, j} = 1)$	$\mathbf{v}_{lum.} \propto \mathbf{y}_{lum.}$ $w_{j,\text{model}} = \int_{100 \text{MeV}}^{100 \text{GeV}} E_{\gamma} \frac{d\phi_{\gamma,j}}{dE_{\gamma}} dE_{\gamma}$

Results: Limits on the blazar contribution

UL on E⁻² flux

Spectrum: $\Phi_0 \cdot (E/\text{GeV})^{-2.0}$				
Diana Class	$\Phi_0^{90\%} [\text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}]$			
Blazar Class	γ -weighting	equal weighting		
All 2LAC Blazars	$1.5 imes 10^{-9}$	$4.7(3.9-5.4) \times 10^{-9}$		
FSRQs	$0.9 imes10^{-9}$	$1.7 (0.8 - 2.6) \times 10^{-9}$		
LSPs	$0.9 imes10^{-9}$	$2.2 (1.4 - 3.0) \times 10^{-9}$		
ISPs/HSPs	$1.3 imes10^{-9}$	$2.5 (1.9 - 3.1) \times 10^{-9}$		
LSP-BL Lacs	$1.2 imes 10^{-9}$	$1.5~(0.5-2.4) \times 10^{-9}$		

Contribution of the total 2LAC blazar sample to the astrophysical neutrino flux

- The equal-weighting upper limit maximally19%-27%,
- gamma-weighting 7%

UL on E^{-2.2~2.5} flux

Equal weighting follows Fermi SCD ApJ, 720:435 (2010)

Coincidence of a high-fluence blazar

M. Kadler et al Nature Phys (2016)

TANAMI – Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry – is a multiwavelength program that monitors extragalactic jets of the Southern Sky ($\delta < -30 \circ$)

- Studied blazars in the 3 PeV events 6 TANAMI monitoring blazars (mostly FSRQ) in the first two PeV events
- a high fluence blazar PKS B1424-418 outburst showed temporal/positional coincidence with the third PeV event with an approximate chance coincidence of ${\sim}5\%$

ANTARES did not find events from PKS B1424-418

blazar- ν correlation search

MNRAS 457 (2016) Padovani

Neutrino sample

4yr IceCube starting (HESE) events (with conditions >60TeV, <20deg \Rightarrow 30evts) and 2 yr HE v_{μ} sample of 21 through-going μ events

sample

Gamma-ray

Independently built Fermi 2FHL, 2WHSP and Fermi 3LAC

catalogues

Neutrino events with γ -ray counterparts

- N_v: the number of v events with at least one γ -ray counterpart found within the median angular error as function of γ -ray flux threshold f_v
 - For a N_v (with given catalog, f_{γ}), chance probability of randomly producing equal or larger N_v is calculated by randomization of gamma-ray source coordinates – generate $\sim 10^5$ randomized maps MNRAS 457 (2016) Padovani

