Clumpy銀河とclumpの性質

但木謙一，児玉忠恭，田中壱，小山佑世（国立天文台），林将央（東大），嶋川理澄（総研大）

内容
1．z＞2のclump銀河とその性質
2．clump migrationとtidal disruption

内容
1．z＞2のclump銀河とその性質
2．clump migrationとtidal disruption

Clumpy銀河（clump cluster）

clumpy銀河のHST画像

clumpの星質量

$$
\begin{aligned}
& \mathrm{M} \times 10^{6}-10^{9} \mathrm{M} \\
& \mathrm{r}=0.5-1 \mathrm{kpc}
\end{aligned}
$$

MAHALO－Subaru project（PI：T．Kodama）

SXDF－UDS－CADELS field

Filter	Instrument	$\mathrm{m}_{5 \sigma, A B}$
u	CFHT／MegaCam	27.68
B	Subaru／Suprime－Cam	28.38
V	Subaru／Suprime－Cam	28.01
R_{c}	Subaru／Suprime－Cam	27.78
i^{\prime}	Subaru／Suprime－Cam	27.69
z^{\prime}	Subaru／Suprime－Cam	26.67
Y	VLT／HAWK－I	26.69
K_{s}	VLT／HAWK－I	25.92
J	UKIRT／WFCAM	25.63
H	UKIRT／WFCAM	24.76
K	UKIRT／WFCAM	25.39
$3.6 \mu \mathrm{~m}$	Spitzer／IRAC	24.72
$4.5 \mu \mathrm{~m}$	Spitzer／IRAC	24.61

銀河の活動が最も激しいz～2の時代に着目

Sample selection

narrow－band（NB）emitters

The distribution of $\mathbf{z}_{\text {phot }}$

モチベーション：星形成銀河の形態を調べる
Ha flux－limitedなサンプルがベスト
clump銀河がどの程度一般的な種族が知ることができる

Clump identification

clump-find algorithm (Williams+94)

clumpy

H_{160} のresolution=0.18"
$\rightarrow 1.5 \mathrm{kpc}$
non-clumpy

Clump or Merger？

F606	F814	F125	F160

2 つの可能性
① smoothなgas streamによって円盤はガスリッチ になり，重力不安定性によって形成された（内的要因）
（2）clumpyなstreamまたはmerger（外的要員）

Clumpy銀河の性質

Color gradient of clumps

銀河中心に近いクランプの方が外側のクランプに比べて赤い色をしている
1．old \＆dusty starburst
2．old \＆quiescent

Clumpy銀河の性質

$\log M *>10.5$ のclumpy銀河で
赤いクランプが見られる （ $\mathbf{I B 1 4}^{\mathbf{8}} \mathrm{H}_{160}>1.5$ ）

Dusty star－forming clump

Spitzer image

MIPS 24 $\boldsymbol{\mu m}$

HST images

color image
rest－frame UV

rest－frame optical

ダスティーな星形成が
この銀河のどこかで起きている

青いクランプ：less dusty赤いクランプ ：dusty or old

赤いクランプでダスティーな星形成をしている可能性が高い

Dusty star－forming clump

ACS V606 WFC3 \mathbf{H}_{160}静止系UV 静止系可視

> red contour：Ha map red circle：red clump black circle：other clumps

静止系UVでは暗いがHaで明るい

massiveなclumpy銀河の中心で

激しい星形成が起きている

$$
\rightarrow \text { バルジを作っている? }
$$

すばる次世代GLAO

GLAOの利点
1．高い感度
2．広い視野
3．高分解能
4．地上にある

GLAOは0．2＂の分解能を達成 （WFC3と同程度）

GLAO＋NB filterの組み合わせが最も競争力のある観測装置となる

Redshift of $\mathrm{H} \alpha$

内容

1．$z>2$ のclump銀河とその性質
2．clump migrationとtidal disruption

Clumpy銀河は円盤銀河になるのか？

Clumpy銀河は円盤銀河になるのか？

constant number density method

赤いクランプを持つclumpy銀河は
円盤銀河というよりは巨大楕円銀河へと進化するだろう
（実際，銀河の中心で原始バルジ的なものがすでに存在）

Clump migration

銀河の中心で激しい星形成を起こすにはガスを銀河中心に運ぶ機構が必要である

clump migrationシナリオの都合の良い点
1．星を銀河中心に運ぶ（直接的なバルジ形成）
2．ガスを銀河中心に運ぶ（銀河中心での激しい星形成•BHへのガス供給） clump migrationシナリオを観測的に検証する必要がある！

slow rotatorとfast rotator

rotation－
dominated
 dispersion－ dominated
morphology－density relation

－slow rotator（classical bulge） merger起源
－fast rotator（pseudo bulge） internal evolution？

Compact quiescent galaxy

slow rotator（classical bulge）の起源？

楕円銀河の形成シナリオ

EARLY－TRACK

LATE－TRACK

Tadaki＋

Clumpy銀河は円盤銀河になるのか？

less massiveなclumpy銀河は現在の宇宙の円盤銀河へと進化する可能性が高い

Clumpy銀河は円盤銀河になるのか？

$\log M_{*} \sim 11.2$ at $z=0$
（Patel＋13）

$r<2 \mathrm{kpc}: \mathrm{z} \mathrm{\sim}$ 2で形成され，成長しない
$r>2 k p c: ~ z ~ 0.5$ までに徐々に成長
$\log M * \sim 10.7$（MW－like）at $z=0$
（van Dokkum＋13）

$r<2 k p c: z \sim 1$ まで円盤と共に成長
$r>2 k p c: z \sim 0$ までに徐々に成長

Clumpは銀河中心まで落ちることができるのか？

Genel＋ 12
stellar feedbackによってクランプは壊れる
clumpのlifetimeを観測的に見積もることが重要

クランプは円盤形成にも寄与するのか？

クランプ位置でのポテンシャルの勾配が大きければ，クランプの一部は潮汐力によ って破壊されてしまう。壊されたクランプの星成分は円盤の構成要素となる。

clump migration／tidal disruptionを検証するには

クランプ内の質量変化
星質量：$\quad \frac{d M_{\text {star }}}{d t}=\mathrm{SFR}-\frac{M_{\text {star }} \times f_{\text {tidal }}}{\tau_{\text {tidal }}}$ ガス質量 ：$\quad \frac{d M_{\mathrm{gas}}}{d t}=\left(\frac{d M_{\mathrm{gas}}}{d t}\right)_{\mathrm{in}}-\left(\frac{d M_{\mathrm{gas}}}{d t}\right)_{\text {out }}-\mathrm{SFR}-\frac{M_{\mathrm{gas}} \times f_{\text {tidal }}}{\tau_{\text {tidal }}}$力学的質量 ：$\frac{d M_{\mathrm{total}}}{d t} \xlongequal{\Rightarrow}\left(\frac{d M_{\mathrm{gas}}}{d t}\right)_{\mathrm{in}}-\left(\frac{d M_{\mathrm{gas}}}{d t}\right)_{\mathrm{out}}-\frac{M_{\mathrm{total}} \times f_{\mathrm{tidal}}}{\tau_{\text {tidal }}}$

クランプに取り込まれるガス

どういう物理量に制限を与えれば良いか？

tidal strippingによるクランプ破壊を円盤のクランプ以外での星形成と比較 することで，クランプ破壊による円盤形成への寄与を調べることが可能

$$
\Sigma \frac{M_{\text {star }} \times f_{\text {tidal }}}{\tau_{\text {tidal }}}>\mathrm{SFR}_{\text {disk }}
$$

$$
M_{\mathrm{total}} /\left(\frac{d M_{\mathrm{total}}}{d t}\right)>\tau_{\mathrm{mig}}
$$

クランプのlifetime
TMT•ALMAを用いてz＞2の小質量clumpy銀河のkinematicsを明らかにする必要がある

近傍LIRGのPa α IFU observation

既存の装置やnuMOIRCSで何かできないか？
z～0．1 clumpy LIRGをターゲットにした面分光観測は，
銀河の形態獲得シナリオに対して重要な制限を与えることが可能！

Summary

わざわざクランプにこだわらなくても・••

- z＞2の時代はclumpyな形態をした銀河が多い
- これらのclumpが形態獲得に何らかの形で寄与したと考えるのは自然
- clumpが銀河中心に落ち込んで疑似バルジになるという予測がある
- clumpが銀河円盤で壊れてディスクになるという予測もある
- これらの予測の観測的な検証は難しい
- 模擬high－z SFGとして近傍LIRGのIFUならどうだろうか？
- 将来的にはTMTでz＞2のclumpy銀河に対してsub－kpc分解能でIFUを行う
- もしかすると 2 つの銀河が合体しているのが，分解能が悪いせいで rotationに見えているというオチかもしれない

