z = 0.1 - 2 での 星形成銀河内の分子ガス

世古明史(京都大学)

共同研究者: 諸隈 佳菜 (NAOJ/NRO) 馬場 淳一 (東工大/ELSI)

1. Scientific Motivation (僕の)

2. 近傍銀河における分子ガス観測

3. z=0.1-2における分子ガス観測

4. ALMAに向けて

分子ガス = 星形成の母体

ガスから星への転換史

銀河形成/進化の理解には 分子ガスの研究が不可欠

gas rich

н

Scientific Motivation

- ●銀河のガス獲得/消費の歴史
 - ガスの割合の進化 fmol-gas(z,M★) = MH2/(MH2+M★)
 - 星形成効率 SFE(z,M★) = SFR/M_{H2}
- ●ガス円盤の内部構造の進化
 - 円盤の分布 (ガスの面密度プロファイル)
 - 円盤の力学状態
 - Vrot, $\sigma_V \rightarrow V_{rot} / \sigma_V$ (thin/thick disk)
 - · Q_{Toomre} (stable/unstable)

近傍銀河の分子ガス観測

z=0.1-2の分子ガス観測

Main-Sequence Galaxies

Sersic Index

Z = 0.1 - 0.3 (Bauermeister et al. 2013)

Z = 0.4 (Geach et al. 2011)

- outskirt of rich cluster (C10024+16 @z=0.395)
- LIRG-class
- IRAM PdBI

- fmol-gas 20%
- 内部構造はまだ…

z = 1 - 2 (Tacconi et

- ・近赤外の分光観測
- IRAM PdBI

- fmol-gas 33% @z=<1.2>
- fmol-gas 47% @z=<2.2>
- $R_{1/2(CO)} = R_{1/2(rest-B)}$
- rotating disk

.....

統計的性質

thin disk stable

clumpy thick disk turbulent

まとめと問題点

	M★ [Msun]	観測天体数	
z~0	>1010	>350	
z=0.1	>3×10 ¹⁰	8	
z=0.2	>1011	5	
z=0.3	>1011	4	
z=0.4	>5×10 ¹⁰	6	
z=1-1.5	>2.5×10 ¹⁰	51	
z=2-2.5	>2.5×10 ¹⁰	15	

- ・z = 0.4-1.0での観測が 欠けている
- ・high-massのものに 限られている
- ・z=0での円盤銀河の 多くは10⁹⁻¹¹M_{sun}

ALMAに向けて

ALMA | 統計的性質

- ① 中間redshift
- ② low-mass側
- ③ high-mass側

cycle 2では…

high-mass: CO line

low-mass: ダスト連続波 (ガス・ダスト比を仮定してMH2)

ALMA 内部構造

z = 0

MW progenitor

ALMA cycle2 (pre-announce)

- 12mアンテナ:34台
- Receiver

Band	周波数 [GHz]	分解能 (1kmで評価)	CO(1-0)	CO(2-1)	CO(3-2)	
3	84-116	0.74"	z=0-0.4	z=1.0-1.7	z=2.0-3.1	
4	125-163	0.52"	_	z=0.4-0.8	z=1.1-1.8	cycle2から!
6	211-275	0.31"	_	_	z=0.2-0.6	
7	275-373	0.23"	_	_	_	
8	385-500	0.17"	_	_	_	cycle2から!
9	602-720	0.11"	-	-	-	

ALMAに向けて | まとめ

• fmol-gas(z,M★)

- 中間redshift (z=0.1-1.0)
- low-mass側 for various redshift

MW progenitor

 $M_{\star} \sim 5 \times 10^{10} M_{sun} @z=0$

- disk成分はz<1でも成長
- z~0.7でdiskのM★進化に変化

Mprogenitor $\sim 3 \times 10^{10}$ Msun @z=0.7; Band-4