$z=0.1-2$ での星形成銀河内の分子ガス

世古 明史（京都大学）
共同研究者：諸隈 佳菜（NAOJ／NRO）馬場 淳一（東工大／ELSI）

Contents

1．Scientific Motivation（僕の）

2．近傍銀河における分子ガス観測

3．$z=0.1-2$ における分子ガス観測

4．ALMAに向けて

銀河内分子ガス

分子ガス $=$ 星形成の母体

－銀河進化
ガスから星への転換史
gas rich
II円盤銀河

銀河形成／進化の理解には分子ガスの研究が不可欠

Scientific Motivation

- 銀河のガス獲得／消費の歴史
- ガスの割合の進化 $f_{\text {mol－gas }}(Z, M \star)=M_{H z} /(M+2+M \star)$
- 星形成効率 SFE（z，M $\left.{ }^{(}\right)=$SFR／Mн2
- ガス円盤の内部構造の進化
- 円盤の分布（ガスの面密度プロファイル）
- 円盤の力学状態
－ $\mathrm{V}_{\text {rot，}} \sigma \vee \rightarrow \mathrm{V}_{\text {rot }} / \sigma \vee$（thin／thick disk）
－QToomre（stable／unstable）

近储銀河の分子ガス観見

COLD GASS ：Saintonge et al．（2011）
－SDSS，Arecibo（HI）survey領域
－z＝0．02－0．05
$\cdot M_{\star}=10^{10-10^{11.5} \mathrm{M} \text { sun } 350 \text { 天体 }}$
－IRAM 30m
－fmol－gas 2－16\％
（only for detected）

$z=0.1-2$ の分子ガス観測

Main－Sequence Galaxies

Sersic Index

－ nsersic $=1-2$
（for $z=0-2.5$ ）
MS \fallingdotseq 円盤銀河

Wuyts et al．（2011）

$z=0.1-0.3$（Bauermeister et al．2013）

Optical

CO 積分強度

（resolution：2．0＂x1．5＂）

（resolution：4．8＂x3．9＂）

速度

半数はStar Burst
－fmol－gas 7－20\％
－rotating disk
－SDSS DR7 から選択
－CARMA

$z=0.4$（Geach et al．2011）

－outskirt of rich cluster （C10024＋16＠z＝0．395）
－LIRG－class
－IRAM PdBI
－fmol－gas 20\％
－内部構造はまだ．．．

Z＝ 1 － 2 （Tacconi et al．2013）

$<\mathrm{z}=1-1.5>$
－EGS survey field
－分光観測（DEEP2）
＜ $\mathrm{z}=2-2.5>$
－BX／MD criteria
－近赤外の分光観測
－IRAM PdBI

$z=1-2 \mid$ CO分布（contour）

$0.6 " \times 0.7^{\prime \prime}(\sim 6 \mathrm{kpc})$

$0.8^{\prime \prime} \times 0.6^{\prime \prime}$

Tacconi et al．（2013）

Z＝1－2｜力学状態（Genzel et al．2013）

CO resolution：0．6＂x0．7＂（ $\sim 6 \mathrm{kpc})$

large σv

－ISMはturbulent

z＝0．1－2 の分子ガス観測 \｜まとめ

統計的性質

内部構造

$\mathrm{z}=0$

$z=1.5$

clumpy thick disk turbulent

まとめと問題点

	$M \star[M s u n]$	観測天体数
$z \sim 0$	$>10^{10}$	>350
$z=0.1$	$>3 \times 10^{10}$	8
$z=0.2$	$>10^{11}$	5
$z=0.3$	$>10^{11}$	4
$z=0.4$	$>5 \times 10^{10}$	6
$z=1-1.5$	$>2.5 \times 10^{10}$	51
$z=2-2.5$	$>2.5 \times 10^{10}$	15

－z＝0．4－1．0での観測が欠けている
－high－massのものに限られている
－ $\mathrm{z}=0$ での円盤銀河の多くは10 ${ }^{9-11} \mathrm{M}_{\text {sun }}$

ALMAに向けて

ALMA \｜統計的性質

－$f_{\text {mol－gas }}\left(\mathrm{z}, \mathrm{M}_{\star}\right)$

（1）中間redshift
（2）low－mass側
（3）high－mass側
cycle 2では．．． high－mass：CO line
low－mass：ダスト連続波
（ガス・ダスト比を仮定してM ${ }^{(} 2$ ）

ALMA \｜内部構造

$z=0$

high－z

MW progenitor

（c）

- z＞1ではbulge，disk共に成長
- z＜lではdiskの方が大きく成長
＾CDM simulationからも示唆
（Okamoto 2013）
－z～0．7付近でdiskの成長に変化

ALMA cycle2（pre－announce）

－12mアンテナ：34台
－Receiver

Band	周波数 ［GHz］	$\begin{gathered} \text { 分解能 } \\ (1 \mathrm{~km} \text { (評価) } \end{gathered}$	CO（1－0）	$\mathrm{CO}(2-1)$	$\mathrm{CO}(3-2)$	cycle2から！
3	84－116	$0.74{ }^{\prime \prime}$	z＝0－0．4	$z=1.0-1.7$	$\mathrm{z}=2.0-3.1$	
4	125－163	0．52＂	－	$\mathrm{z}=0.4-0.8$	$z=1.1-1.8$	
6	211－275	$0.31{ }^{\prime \prime}$	－	－	$z=0.2-0.6$	
7	275－373	$0.23 "$	－	－	－	
8	385－500	$0.17{ }^{\prime \prime}$	－	－	－	cycle2から！
9	602－720	$0.11^{\prime \prime}$		－		

ALMAに向けて \｜まとめ

－ $\mathrm{f}_{\text {mol－gas }}(\mathrm{z}, \mathrm{M} \star$ ）

- 中間redshift（z＝0．1－1．0）
- low－mass側 for various redshift
－MW progenitor
M ネ $5 \times 10^{10} \mathrm{M}$ sun $@ z=0$
- disk成分はz＜1でも成長
- z～0．7でdiskのM $\mathrm{A}_{\text {進化に変化 }}$
$M_{\text {progenitor }} \sim 3 \times 10^{10} \mathrm{M}_{\text {sun }} @ z=0.7$ ；Band－4

