すばるGLAO計画について

美濃和陽典(国立天文台ハワイ観測所)

+ すばる次世代補償光学検討グループ

国立天文台

有本 信雄、家 正則、岩田 生、臼田 知史、大橋 永芳、大屋 真、兒玉 忠恭、高遠 徳尚、 高見 英樹、瀧浦 晃基、田中 壱、寺田 宏、友野 大悟、西村 徹郎、服部 尭、服部 雅之、 早野 裕、美濃和 陽典

東北大学

秋山 正幸、大野 良人

東京大学

本原 顕太郎、田村 直之

JAXA

白旗 舞

北海道大学

渡邊 誠

2013/9/28 円盤銀河研究会@三鷹

補償光学(AO)とは?

地球大気の揺らぎをリアルタイムに測 定し、可変形鏡で補正する事で、望遠 鏡の回折限界分解能を得る装置

現在運用されているAO188では、ガイド星のごく近傍(半径30秒角程度)でしかAOの効果が得らていれない。

GLAOとは?

Ground Layer Adaptive Optics (地表層補償光学)

- 地表に近い大気揺らぎのみ補正
- 数ある広視野AOの方式の中で 最も広視野が得られる
 - 最大0~20'まで可能
- AOによる補正の効果は少ない。
 シーイングサイズを約半分(~0".
 2@Kバンド)にする程度

地表層における大気揺らぎ

高度約30m以下の大気揺らぎが最も強い

揺らぎの強さ(Cn²)

Maunakea Ground Layer Characterization Campaign (Chun et al. 2009)

すばる次世代装置構想

- 2020年代のHSC, PFSに並ぶすばるの旗艦装置としての位置づけ
- HSC, PFSの観測できない明夜での観測を担う近
 赤外線観測装置
- TMTとの連携を考えた、他の8mにはないユニークな装置

GLAOにより広視野 高感度の近赤外撮像 分光装置を実現

Ultra-wide-field Laser Tomographic Imager and MOS with AO for Transcendent Exploration by SUBARU telescope.

1000素子の可変形副鏡

<u> 究極のすばる</u>

GLAO+可変形鏡により超広視野、高感度 の近赤外線観測を実現

<u>至高のすばる</u>

1000素子可変形副鏡により、高スループット、 高ストレール比のAOを実現。

→ Extreme-AO, 可視AO、中間赤外AOへ応用

ULTIMATE-Subaru: GLAO スペック(案)

Guide stars	4 LGSs + 3 NGSs	
DM	Secondary mirror	~1000 actuators, modification of VLT ASM.
HO-WFS	> 8x8 SH	visible, EM-CCD(TBD)
TT(F)-WFS	2x2 SH or quad	visible
Laser	20 W CW	TOPTICA (589nm) (option: Rayleigh)
LGS constellation	15' in diameter	
Laser Launch	~25cm dia. (TBD)	side launch

ULTIMATE-Subaru: 新近赤外線撮像分光装置スペック(案)

Wavelength	0.8-2.5µm	
Plate Scale	0.06-0.1"/pix	
FoV	approx.13'x13'	Wider with Split FoVs?
Imaging	Broad+Narrow	Y,J,H,K, NB
Spectroscopy	Multi Object Slit	Alternatively Multi-IFU
λ Dispersion	2000(TBD)	Under Investigation

Comparison: Imaging

	HST WFC3/IR	Subaru MOIRCS	Gemini Flamingos +GEMS	VLT HAVVK-I + GRAAL	Subaru GLAO	TMT IRIS	JWST NIRCam
Telescope Aperture	2.4m	8.2m	8.1m	8.2m	8.2m	30m	6.5m
Wavelength Coverage	0.9-1.7 <i>μ</i> m	0.9-2.5 <i>μ</i> m	0.9-2.5 <i>μ</i> m	0.9-2.5 <i>μ</i> m	0.9-2.5 <i>μ</i> m	0.84-2.4 μ m	0.9-2.3 μ m / 2.4-5.0 μ m
Spatial Resolution	0.13"/pix FWHM~ 0.25"	0.117"/pix 0.4"@2 <i>μ</i> m	0.09"/pix <0.1" @2μm	~0.1"/pix 0.2"@2 <i>µ</i> m	~0.1"/pix 0.2"@2 <i>µ</i> m	4 mas I0mas@I μm	32 mas / 64 mas
Field of View	4.65 □'	28 □'	4 🗆'	55□'	~180 □'	0.075 □'	9.7 □'

Comparison: Spectroscopy

	Subaru MOIRCS	Keck MOSFIRE	Gemini Flamingos2 +GEMS	VLT KMOS	Subaru GLAO	TMT IRIS	JWST NIRSpec
Wavelength Coverage	0.9-2.5 μ m	0.9-2.5 μ m	0.9-2.5 μ m	0.9-2.5 <i>μ</i> m	0.9-2.5 <i>µ</i> m	0.84-2.4 μ m	0.6-5 <i>μ</i> m
Spatial Resolution	0.117"/pix 0.4" @2μm	~0".18/pix <0"5 @2μm	~0".09/pix <0"I @2 µ m	~0".2/pix 0"6 @2 µ m	~0.1"/pix 0.2" @2 µ m	4 - 50 mas	0.2"x0.45"
Field of View	~25 🛛'	~37 🛛'	4□'	~52 🛛'	~120 □'	0.2-10 <u>□"</u>	I 2.24 □'(MSA) 3''x3''(IFS)
Functions	Single-Slit MOS IFS	MOS	MOS	Multi IFS	MOS Multi-IFS?	IFS	Slits Microshutt ers IFS
Spectral Resolution	600-3000	3000-5000	3000	3000~4000	-2000?	4000 -10000	100, 1000, 2700

タイムライン

Thirty Meter Telescope

次世代広視野補償光学システム

Subaru Next-Generation AO Working Group

すばる望遠鏡

検討報告書

August, 2012

GLAO 性能評価

FWHM

	-			
	R	J	Н	К
Seeing	0.65″	0.51″	0.49″	0.44″
GLAO	0.41″	0.27″	0.23″	0.20″

Ensquared Energy (0.24"x0.24")

	R	J	Н	К
Seeing	9%	12%	15%	17%
GLAO	16%	29%	36%	41%

Zenith angle dependency

	0°	15°	30°	45°	60°
Seeing	0.44"	0.49"	0.52″	0.60"	0.76″
GLAO	0.20″	0.28″	0.31"	0.38″	0.55″

Kバンドで0".2

(大屋さんGLAO Science Workshop 2013発表資料より抜粋)

GLAOによるサイエンスケース (系外銀河編)

- 最盛期の銀河形成の解剖
 - 銀河の内部構造を空間分解し、銀河形成過程の 物理を明らかにする

- 円盤銀河の形成過程

・ 黎明期の銀河の検出

- 狭帯域フィルターによる広視野、高感度撮像により、赤方偏移8を超える原始銀河の探査

Science requirement: Spatial Resolution

• Can we spatially resolve ~1kpc scale star-forming clumps at z~2?

• Can we reconstruct morphological parameters of z~2 galaxies?

Science requirement: Sensitivity

SINFONI spectroscopic survey of z~2 star forming galaxies (Forster Schreiber+09)

- SINS zC-SINF AO
- SINS seeing R>4.5 kpc
- Wisnioski AO
- Swinbank AO
- Law Wright AO
- Lemoine-Busserolle Epinat seeing R>4.5 kpc
- Epinat AO

 Can we detect Hα emission line corresponds to SFR ~ 1-10 M_{sun}/yr to study < 10 ¹⁰M_{sun} galaxies?

GLAOによるz~2円盤銀河観測シミュレーション

- Wide Field NIR imaging
 - Broad-band (BB) imaging
 - Narrow-band (NB) imaging
- Multi-Object Slit (MOS) spectroscopy
 - Emission line
 - Continuum
- Multi-IFU spectroscopy
 - Emission line

Imaging

Baseline Specification

Wavelength	0.8µm – 2.5µm
Plate Scale	0.10"
FoV	13.6' x 13.6'
Detectors	4 Teledyne H4RGs (4 x 4096 x 4096 pixels)
Filters	Broad-band and Narrow-band filters

- Wider than any NIR imager on 8m class telescopes
- The instrument throughput is assumed to be same as VLT/ HAWK-I (~60%@JH, ~50%@K)

Broad-band imaging: Sensitivity

PSF:

 0.7-1.0mag sensitivity gain over seeing instrument (VLT/Hawk-I)

Extended Source :

- 0.3-0.6 mag gain for compact galaxies (<3kpc).
- Comparison with TMT/JWST:
 - Limiting mag is more than 3 mag brighter than TMT or JWST (~30mag in K, Wright et al. 2010).
 - Broad band imaging cannot be competitive
 - Wide-field capability might be useful for finding rare objects like passively evolving galaxies.

BB imaging: morphological parameters

- Morphological parameters (Re, N) can be reconstructed from the GLAO image for galaxies whose mass is larger than 10¹⁰ M_{sun}
- For lower mass galaxies 10⁹ M_{sun}, we can reconstruct size (Re), but cannot reconstruct Sersic index.

Narrow-band imaging

(但木さんGLAO Science Workshop 2013発表資料より抜粋)

J-band : z~1 HAE, z>7 LAE, z>2 QG H-band : z~1.5 HAE K-band : z~2 HAE

Narrow-band imaging: Hα map

- Simulated Bry-image of H α emitters at z=2.3 with 5hrs integration
 - made from HST/WFC3 images of star-forming galaxies in SXDF (Tadaki+13)

NB imaging: Sensitivity for detecting H α from z~2 galaxies

- Extended source Sensitivity gain:
 - 0.3-0.6 mag deeper than seeing limited (VLT/HAWK-I) for compact galaxies (<3kpc)
- Hα emitters with SFR < 10Msun/yr for galaxies with re < 3kpc.
 - Can be a good sample provider for the IFU study with TMT
- Comparison with JWST/NIRCAM
 - ~1.8 mag deeper than GLAO NB image for galaxies with re~2kpc
 - Legacy type survey with more than 100hrs integration could be competitive

Multi-Object Slit Spectrograph

Baseline Specification

Wavelength	0.8µm – 2.5µm	
Plate Scale	0.10"	
FoV	13.6' x 13.6'	
Detectors	4 Teledyne H4RGs (4 x 4096 x 4096 pixels)	
Filters	Broad-band and Narrow-band filters	
MOS	Multi Slit Mask	
λ Dispersion	~3000	

- Keck/MOSFIRE type instrument with 13'x13' FOV
 - Wider FOV than any existing MOS spectrograph on 8m class telescopes
- Assume similar throughput as Keck/MOSFIRE
 - the highest throughput ever achieved (30-40%@JHK)
 - Seeing performance is just same as Keck/MOSFIRE
- Slit width is assumed to be 0".4 which is 2 times wider than GLAO PSF.

MOS Spec.: emission line sensitivity

 Emission line 5σ sensitivity for point source and extended source (Re~1kpc or ~ 0".12 and N=1) with 5hrs integration.

MOS Spec.: Emission line sensitivity

• S/N of H α emission line flux which corresponds to SFR~ 1 M_{sun}/yr (assume E(B-V)=0.2) with 5hrs integration

MOS. Spec: Summary

- Emission line: GLAO can increase the S/N of emission lines by 2 times higher than MOSFIRE.
- SFR~1M_{sun}/yr can be detected with Ha emission line located between sky emission line.
- Provides better sensitivity than NB-imaging, which enables redshift confirmation of the Ha-emitter discovered by NB imaging.
- Although TMT can achieve 3 times better S/N than GLAO (based on Law et al. 2006), the MOS capability is still required to enable rapid follow-up of the target discovered by GLAO NB imaging.

Multi Object IFU

Baseline Specification

Wavelength	0.8µm – 2.5µm
Spatial Sampling	0.125"
FoV per IFU	1.75" x 1.75"
Number of IFUs	24 (TBD)
Detectors	3-4 H2RGs? (TBD)
Patrol Area	~ 13'
λ Dispersion	~3000
Imaging Capability	No

- VLT/KMOS type multi-IFU
- Throughput is assumed to be 80% of MOSFIRE due to the optical components for IFUs.

Multi-IFU: mock image

- Simulated IFU S/N map of H α emitters at z~2.3
 - same objects as we used for NB imaging

Multi-IFU: Sensitivity

Star Formation Rate [Msun/yr]

Multi-IFU: Summary

- Star-forming cramps can be resolve with IFU.
- GLAO IFU spectrograph can be detected Hα emission line from z~2 galaxies corresponds to SFR~ 1Msun/yr, if size of galaxies is less than 2 kpc.
- TMT/IRIS can detect SFR~1Msun/yr from similar size galaxies with S/N>40 (Wright et al. 2010)
- To be competitive with TMT/IRIS, GLAO IFU should have multiplicity of targets with more than 64 pick-off arm.
 - Need to investigate if this number is technically possible.

円盤銀河研究においてULTIMATE-Subaruができること

Competitive less competitive Not so Competitive

- ブロードバンド撮像:
 - Normal seeingに対して>0.5mag以上の感度ゲインはあるが、TMT/ JWSTに対して感度の面では敵わない。
 - 形態の研究はできそう。Kバンドでz~3の静止系可視形態を網羅的に 観測するのは意味があるかも。ただし、JWSTがやらなければ。
- ・ ナローバンド撮像:
 - SFR <10 Msun/yrの銀河サンプルを提供。TMT IFUでのフォローアップ。
 - 100時間超のレガシーサーベイにより、JWSTと競合できる。
- 多天体スリット分光:
 - 装置スループットをMOSFIREレベルまで高められれば、輝線感度は TMT/IRISの1/3程度。NB撮像による独自サンプルの分光フォローアップはユニークになり得る。
- 多天体IFU:
 - ピックオフアームの数を60個以上(VLT/KMOSの2倍以上)にすれば、 TMT/IRISのIFUと競合できる。技術的には困難。TMTにMulti-IFUを載 せる方が断然有利。

皆さんに議論して頂きたい事

- 2020年代における円盤銀河研究に必要な観測モードは?
 - Cold gas accretionの直接的な証拠は得られるか?
 (7年後にその話題はまだ続いているのか…?)
- 現在のULTIMATE-Subaruのスペックはそれを満たしているか?
- 多天体IFUモードは必要か?
 - 6月に行われたGLAO Science WSでは強い要望は無かった。
 - VLT/KMOSの10年後、TMT/IRISがある中すばるが持つ必要があるか?
- その他、ULTIMATE-Subaruでの観測シミュレーションのご要望があれば お知らせください。
 - 近傍銀河の観測可能性は?
 - 理論シミュレーションの結果を元に観測可能性を見積もる。