理論降着円盤モデルと 観測降着円盤モデル

BLACK HOLES

Read and a set of the set of th

Swift J1753.5-0127 fading away.. in a soft state ???

MAXI J1910 Nakahira's talk

Yoshikawa+ 2015, PASJ

22

11

0:5

0.2

0.1

4

 $\mathrm{ke} \mathcal{W} F_{\text{Ph}}(\mathrm{tek} S_{m} s_{s^{-1}}^{-1} \mathrm{g} \mathrm{te} v_{s^{-1}}^{-2})$

ž

Swift J1753.5-0127 Swift/XRT

Observations vs Theories

- Low/Hard State
 - Power-Law (= Advection Flow, Corona or jet ?)
 - Flickering (= Advection)
- Intermediate State
 - Steep Power-Law dominant (= Corona Dominant Disk ?)
 - QPOs (=inner boundary instability, disk warp, Lense-Thirring ??)
- High/Soft State
 - Thermal Disk (= S-S Standard Disk) + Power-Law tail (= Corona ?)

Power-Law: Corona, ADAF, or Jet?

Swfit J1753.5-0127/Swift (Yoshikawa+ 2015)

Empirical Models

power-law , exp-cut power-low, ..

Comptonization Models

nthcomp (Tdbb/bb, Te, Γ : Zdziarski+96, Zycki+99) *simpl*(*diskbb) (Γ , fraction : Steiner 09) *comptt* (Tbb, Te, τ : Titartuck+ 94, 95, 96) *compbb* (Tbb, Te, τ : Nishimura+ 86)

Good fits, but no geometry info

Complex Models

eqpair (Coppi o2?) compps (Poutanen+ 96)

Too many (~20) parameters

Compton Cloud?

Old ('70s) and New problem - "corona" or "inner region (2 temperature SLE model)"

Fitting gives

Electron Temperature: Te, τ (Γ) Disk parameters: Tbb, Rin Compton Fraction: fc

if Corona, a real vertical structure?
soft state : Rin <= color temperature correction
Tcolor/Teff ~ 1.7-1.9 (Shimura+ 1995),
 ~ 1.5-1.6 (e.g., Devis+ 2005)
 AND competing with Corona!
hard state: rapid time variations?</pre>

Assuming a spherical region, fc ≤ 20% (indep. of Rin)
 hard state : fc > 20%
 -> simple model N.G.
 -> seed photon: synchrotron, brems?, e.g., ADAF (or jet!)

ADAF?

Cabanac+ 2009

Figure 14. Bolometric luminosity as function of the accretion rate in the optically thick disc $\dot{m}_{\rm d}$ obtained for our sample, using equation (7). Points are subject to global horizontal shifts due to the actual Eddington efficiency value used. The set of curves shows theoretical relations. Dashed: $L_{\rm bol} \sim L_{\rm disc} \propto \dot{m}_{\rm d}$ when $R_{\rm in} = 6R_{\rm g}$ and the efficiency at Eddington luminosity $\eta_{\rm Edd} = 0.1$. Under $\sim 10^{-2}L_{\rm Edd}$, continuing relationship when $L_{\rm bol} \propto \dot{m}_{\rm d}^2$. Supposing $\dot{m}_{\rm total} \sim \dot{m}_{\rm d}$ we have ADAF solutions (dotted), MH02 (Dotdot–dashed) and RC00 (Dot–dashed). The value of α and β are the same as in Fig. 16. Errors on $\dot{m}_{\rm d}$ were computed by propagating those on the temperature and the inner radius only. Colour/symbol code is the same as in Fig. 9.

Near future by MAXI..

Q: Successive Sporadic Flares ?

Swift J164449.3+573451

GS 2023+338 (404 Cyg)

swift.ac.uk

Courtesy of K. Terada (1994)

2015/06/15~ renewed outburst! Barthelmy+ GCN 17929, Negoro+ ATel 7646

Makishima+ 2008, Yamada+2013

More complex.

Cyg X-1 (Negoro+ 1994, Yamada+ 2013)

XTE J1118+480 (Malzac+ 2003) also GX 339-4 (Gandhi+ 2010)

Rapid Variation, Shot - Density Fluctuation on ADAF

Jet as the origin of the PL?

e.g., Markoff+2001

Compton?

FIG. 3.—Coherence function (solid line, right axis) and time lags of the hard X-rays (7.3–14.6 keV) behind the soft X-rays (1.2–7.3 keV) against frequencies (filled circles, left axis). (All these crosses indicate hard X-ray lags behind soft X-ray.) Time lags of the superposed shot are denoted by the open circles, which show common behavior below a few Hz, where the coherence is high.

Precise models provide..

ADAF

Esin+ 1997

Plasma Pair..

Coppi 2002?

観測と一致するようには思えない。。

Mass and spin : Inner region of the standard disk

simple multi-color disk model: *diskbb* (Mitsuda+ 1984) + general relativity: *grad* (Hanawa 1989, Ebisawa+ 1991), *diskpn* (Gierlinski+ 1999)..

+ spin: kerrbb (Shafee+ 2006)

+ metal opacities : *bhspec* (Davis+ 2006)

+numerical simulation (Kularni+ 2011)

-> advection, viscos dissipation at risco (radial pressure gradient ?)

Figure 1. Luminosity profiles from the GRMHD simulations (solid lines) compared with those from the NT model (dashed lines) for $a_* = 0, 0.7, 0.9$ and 0.98 (bottom to top). The disc thicknesses are |h/r| = 0.05, 0.04, 0.05 and 0.08 respectively for these runs. The ISCO is located at the radius where the NT disc luminosity goes to zero.

Kulkarni+ 2011

Accurate measurements of Rin

Figure 1. Top: accretion disk luminosity in Eddington-scaled units ($M = 10 \ M_{\odot}$) vs. time for all the data considered in this study (766 spectra). Red arrows show *RXTE* data which are off scale. Data in the unshaded region satisfy our thin-disk selection criterion (H/R < 0.1, which implies $l_D < 0.3$; McClintock et al. 2006). The dotted line indicates the lower luminosity threshold (5% L_{Edd}) adopted in Section 3.1. Bottom: values of the dimensionless inner-disk radius r_{in} are shown for thin-disk data in the top panel that meet all of our selection criteria (411 spectra; see Section 3.1). Despite large variations in luminosity, r_{in} remains constant to within $\approx 4\%$ over time. The median value for the *RXTE* data alone ($r_{in} = 3.77$) is shown as a red dashed line.

Figure 2. Dimensionless inner-disk radius r_{in} vs. luminosity for the filtered data (Section 3.1) and our baseline model. The vertical black line shows our adopted thin-disk upper limit, $l_D = 0.3$. As in Figure 1, the red dashed line shows the *RXTE* average below this limit.

Steiner+ 2010

まとめ

- ブラックホール降着円盤からのスペクトルは(光学的に厚い)熱的円盤成分とべき型成分からなる
- Low/Hard State
 - べき成分は、単純なコンプトン散乱ではない
 - (熱的成分)内縁半径の見積もりには注意(色温度補正,散乱成分の割合など)
 - シンクロトロンジェットの寄与もあるはず
 - ADAFの検証はまだ半ば
 - ガス圧、磁気圧で支えられた2種のハードステートの観測的違いは?
- High/Soft State
 - 熱的成分は、相対論、inflow に考慮して、モデル化はかなり進んでいる
 - (質量,距離が分かれば)スピンも決められる。HF-QPO と一致しない
 - べき成分との関係?そもそもべき成分の起源は?
 - 単純な diskbb モデルとの関係は? (常に bhspec がベスト?)
 - 鉄輝線
 - 光源の起源、連続成分の寄与、モデル化にまだ不確定性が多い
- Jet, (Low/High frequency) QPO は理論的にはまだ未解決