Optical Spectroscopic observations of the Be/X-Ray binary A0535+262/V725 Tau during the giant outburst in 2009

Y. Moritani(1), D. Nogami(1), A. T. Okazaki(2), A. Imada(3), E. Kambe(3), S. Honda(1), O. Hashimoto(4) and K. Ichikawa(1)

1) Kyoto Univ 2) Hokkai-gakuen Univ. 3) OAO/NAO 4) GAO

Optical high dispersion spectroscopic observations of the Be/X-ray binary A0535+262/V725 Tau during the giant outburst will be reported. The giant outburst occurred in A0535+262 in November 2009 for the first time since 2005. We carried out the spectroscopic monitoring from November 2009. In the brightening phase of the giant outburst, the observation performed densely (almost at every night). Obtained H-alpha, H-beta and He I emission line, exhibiting dramatical profile variability during the giant outburst, has highly redshifted (100km/s) bright component, which had weakened before the normal outburst in March 2010. We discuss profile variability of these emission lines.

1. Be/X-ray Binary
- Be star + compact object (NS)
- Majority of HMXRBs
- Quescent $L_x \leq 10^{36}$ erg/s (Okazaki+ 2002, MNFRS, 337, 967)
- Normal (type I) outburst $L_x \sim 10^{36-37}$ erg/s
- Giant (type II) outburst $L_x \geq 10^{37}$ erg/s
- Less frequently than normal outbursts
- B stars (Emission stars):
 * B stars which have exhibited Balmer lines in emission at least once (Luminosity class III-V)
 * Equatorial region … weak outflow (1 km/s), balance between the surface gravity and the centrifugal force due to rapid rotation (≤several 100 km/s)
 * Geometrically thin circumstellar envelope: Be disc

2. A0535+262/ V725 Tau
- O9.7IIIe + NS, $m_v: 8.9$ mag (Giangrande+ 1980, A&AS, 40, 289)
- $p_{\text{orb}} = 110.24$ days (Moritani+ 2010, MNRAS, 405, 467)
- $e \sim 0.47$ (Finger+ 1994, APIC, 308, 459)
- 6 giant outburst have been observed:
 * Giant outburst in Nov.-Dec. 2009
 * Precursors in Oct. (Sugizaki+ 2009, Atel. #2277)
 * Rapid brightening at 30 Nov. (JD 2455166)
 * 3.1 Crab at the peak in 15-50 keV (Krimm+ 2009, Atel. #2336)
 * Normal outbursts after the giant outburst
 * Precursor … outburst in March and July in 2010
 * No precursor … outburst in October 2010
- X-ray peak shift in October 2010

3. Observations
- OAO/HIDES, GAO/GAOES
 * Optical Echelle spectrograph
 * $R \sim 50,000$, $S/N \sim 100$
- Wavelength and lines:
 * OAO/HIDES: 3800 - 6700 α
 * GAO/GAOES: 4800 - 6700 α
- EW(Ha) reflects the density of outer region in the Be disc

4. Results
Line profiles show drastic variabilities
A: before the giant outburst:
* Ha: red dominated * He I: 5876 double peaked (V>R)
B: around the precursor:
* The E/C gradually increased * He I: 5876; the violet component brighter
* Ha: the violet shoulder brighter, the component ~120 km/s disappeared
C: rising phase and around the peak:
* Ha: the E/C decreased, bright “bump” appeared ~0 km/s
* He I: 5876; the center part (~±50 km/s) brightened
D: E-pading phase:
* Ha: the “bump” faded once and reappeared, the E/C increased and decreased again
* He I: 5876; the E/C increased and slightly decreased again
The violet component shifted violet-ward and then red-ward
F: after the giant outburst: ... after the apastron ($\phi_p=0.624$)
* Ha: the component ~120 & 200 km/s brightened
 * The violet “bump” weakened and/or broadened
* He I: 5876: the violet component shifted to ~200 km/s
 * The “valley” of the profile became clear
G: prior to the normal outburst in March 2010:
* Ha: the component ~200 km/s brightened
* He I: 5876: the E/C slightly brightened
H: I & J: around the normal outburst:
* Ha: the violet wing ~200 km/s faded at periastron
 * The profile turned wider and flattened (“red” two peaks remained)
* He I: 5876: the bright component appeared ~0 km/s
 * The red component weakened

K: current:
* The profile become different between the Ha and the He I 5876 lines
 * Ha: V>R, became broader, the E/C decreased
 * He I: 5876; V>R, two peaks are seen ~120 & 320 km/s.

The density and/or the temperature of the inner region became lower!