京大極限補償光学: 極安定環境を目指した恒温槽の開発

松尾太郎、夏目典明、木野勝(京大)、 京大惑星探査装置グループ

京大3.8m補償光学装置: 極安定環境を目指した恒温槽の開発

紹介する恒温槽は使用しません

松尾太郎、夏目典明、木野勝、 京大惑星探査装置グループ

要求仕様の導出

恒星の全フラックスに対するリーク量

$$f = \frac{1}{F_*} \int_{disk} T(\theta, \alpha) B_* d\Omega = \frac{1}{F_*} \int_{disk} \sin^2 \left(\frac{\pi b}{\lambda} (\theta \cos \alpha + \Delta \theta_x) \right) B_* d\Omega$$

F*: 全フラックス量、b:シア量、T:コロナグラフの透過率、B*: 恒星の輝度分布

要求仕様

○ 極限補償光学に由来する波面エラーに よるコントラストの劣化

	可変形鏡 素子数	フレーム レート	コントラスト
#1	1000	5kHz	2x10^(-6)
#2	4000	20kHz	1x10^(-7)

〇 コロナグラフへ入射する許容可能な 指向誤差:

#1では、8mas #2では、4mas

→200mm高のマウントアルミ(2.3E-5/K)を採用 する場合、5mKの温度ムラで10mas。

恒温槽コンセプト

〇熱源を風下に集中。 〇温度一定の風で熱を除去。

温度分布シミュレーション

波面計測試験

〇目的:

乱流の発生による波面の乱れの評価。

〇概要:

日本スピンドル社(尼崎市)の恒温槽で波面の揺らぎを 計測。

〇方法:

恒温槽内部に置かれた平面鏡(φ80)に i-Fizeauから出た平行光を当て、 その光路で発生する波面揺らぎを 積分値として評価。

風下

風上

i-Fizeau

実験風景

環境

O風速、物体(カメラ)あり・なし、熱源(カメラON・OFF)あり・なしで 環境を変えてデータを取得。

データ番号	風速 (m/s)	物体	熱源
1	0.1	なし	なし
2	0.3	なし	なし
3	0.1	あり	なし
4	0.3	あり	なし
5	0.1	あり	あり
6	0.3	あり	あり

風下

データリダクション

• 計測方式:

偏光を用いて参照光と被計測光 の位相差を0, PI, PI/2つけた3つ の干渉像を同時取得。

フレームレート:

30Hz

 データ制約: Tip/Tiltは除去。 平面鏡の歪みは除去。 (振動は同時取得により除去さ れている)

計測画面

平面鏡の 金みが 大きく、 金み量の除去が難しい所

- 〇 赤の箇所(平面鏡の歪み が大きい)は除いてデータ を評価。
- 〇 3つの干渉像の強度が 異なるため、縞(青の点 線)が残存。

結果1

〇考察

- 波面が乱される領域はカメラから 10mmの距離で限定的。
- シミュレーション結果と範囲において ほぼー致

○ 考察

- 風速0.1m/sの場合とほぼ同じ結果。
- 風速が大きくなることによる影響 なし

結果3

〇 考察 -波面乱れの範囲は平面鏡全体に 拡大。

青:π、緑:0、黒:-π

結果まとめ

データ番 号	風速 (m/s)	物体	熱源	波面揺らぎ (rms)	要求仕様	備考
1	0.1	なし	なし	< λ/20	0	
2	0.3	なし	なし	< λ/20	0	
3	0.1	あり	なし	~ λ/18	0	カメラから 10mm以遠の データを使用
4	0.3	あり	なし	~ λ/18	0	カメラから 10mm以遠の データを使用
5	0.1	あり	あり	~ λ/8	X	カメラから 10mm以遠の データを使用
6	0.3	あり	あり	~ λ/8	Х	カメラから 10mm以遠の データを使用

まとめと今後

- ・まとめ
- 熱源を取り除くための風を用いた恒温槽装置で 波面の揺らぎを計測。
- 熱源のある環境では、カメラ(センサー)周辺で揺 らぎが大きく、要求仕様のλ/20は満たさない。
- ・今後
- スペース技術を応用した、真空 + MLI + 水冷により光学系の温度を一定に保つ方式で検討を進める。