中間赤外線高分散分光観測装置の開発 GIGMICS(<u>G</u>ermanium <u>Immersion Grating</u> <u>Mid-Infrared Cryogenic</u> <u>Spectrograph</u>)

Wide coverage: 7.5< λ <13.5um, High dispersion: R~40,000, Designed for line survey and search for interstellar molecules

echelle grating groove interval : 0.6 mm blaze angle : 68.75 deg. order : 344 – 560 th size : 30 × 30 × 72 mm Surface roughness: ~3nm

名古屋大学環境学研究科/地球惑星科学教室 平原靖大

可視赤外線観測装置技術WS 2013/12/17

Spectroscopic observation in the Astronomical "N-Band": 8~13 µm

- "All molecules have Vibrational transition":
- Fingerprint region (指紋領域) for Organic molecules

e.g. streching of C-C C-O C-N, Bending of C-C-C

vibration-rotation transitions of Methane, Ethane, Ammonia, N₂O, O₃, SO₂, H₂O, CO₂, SO₂, H₂S, NOx, Halogen Oxides, etc. dispersion: $R>30,000 \rightarrow Vib.Rot$. Transitions High resolvable for various "tri-atomic" molecules: CnHm^(+, -) ==Key species in Astrochemistry

Interstellar Molecules Detected in IR Only(≒Nonpolar)

•Simple Hydrides, inorganic species :

H₂, HF, HCl, H₂O, NH₃, C₂, O₂, CH₄, CO, CO₂, N₂O, H₂S, CS, SO₂, OCS, SiH₄, SiO, SiS, NaCI, KCI, AICI, AIF, PN, HCP

omolecules in cyclic (AROMATIC) form :

c-C₃H, c-C₃H₂, c-(CH₂)₂O, c-C₃H₂O(cycloprpenone), C₆H₆ (benzene), c-SiC₂, c-SiC₃, C₆₀, C₇₀ (Spitzer)

o"Cyanopollynes, polyacetylenes and related "LINEAR Carbon chains" :

 C_3 , C_5 , C_3O , C_3S , C_3O , C_3S , H_2C_3 , H_2C_4 , H_2C_6 , C_2H_2 , HC_4H (diacetylene) HC₆H(triacetylene), C₂H₄, C₄Si, HCN, HNC, HC₃N, HNCCC, HCCNC, HC₅N, HC₇N, HC₉N, HC₁₁N, CH₃CN, CH₃NC, CH₃CH₂CN, CH₃C₃N, CH₃C₅N, CH₃CCH, CH₃C₄H, CH₃C₆H, C_2H_5CN , C_2H_3CN , C_2H_5CN

olons :

H₃⁺, CH+(OPT), CO⁺, SO⁺, CF⁺, HCO⁺, HOC⁺, HN₂⁺, HCS⁺, H₃O⁺, H₂COH⁺, HOCO⁺, HCNH⁺, HC₃NH⁺, C₄H⁻, C₆H⁻, C₈H⁻, C₃N⁻, C₅N⁻ , H_2O^+ , H_3O^+ , OH^+ , SH^+ , H_2CI^+ (Herschel)

•Radicals :

CH, CH₂, CH₃, OH, NH, NH₂, SH, HNO, SO, NS, NO, SiC, SiN, NaCN, MgCN, MgNC, AINC, SICN, SINC, NH2CH, HCO, CCH, C3H, C4H, C5H, C6H, C7H, C8H, CN, C3N, C5N,

H₂CN, HCCN, HC₄N, CH₂CN, CCO, CCS, CP, PO

 Aldehydes, Alchoholes, Ethers, Ketons, Amides and related species("Pre-Biotic") molecules) : H₂CO, H₂CS, CH₃CHO, HNCO, HNCS, NH₂CHO, HC₂CHO, CH₂OHCHO, CH₃OH, C₂H₅OH, CH₂CHOH, CH₃SH, (CH₃)₂O, (CH₃)₂CO, HCOOH, HCOOCH₃, CH₃COOH, H₂CCO, CH₂CCHCN, CH₂NH, CH₃NH₂, NH₂CN, CH₃CONH₂

Few IR "line survey" in IR, "No" laboratory IR data

The Mid-Infrared bands toward the new detection by GIGMICS/SUBARU

Species	Vibration	Transition frequency (cm ⁻¹)			
(electronic state)	Mode	ab initio calculation	Matrix spectrum	Gas-phase spectrum	
CH ₃ ⁺	ν ₁	2942 ⁾		–no data–	
3	v_2	1377 ⁶⁷⁾		-no data-	
	v_3	3090 ⁾ , 3108 ⁶⁷⁾		3108)	
	ν_4	1387 ⁶⁷⁾		–no data–	
$C_2 H_2^+ (^2 \Pi_u)$	ν_3	3340 ⁾		3136) (IR difference Laser spectroscopy)	
	ν_4	741 ⁷⁰⁾		754 ^{71),)} (Laser Induced Reaction+ion trap)	
$C_2H_3^+$	ν_6	3159 ⁾		3136, 3142)(IR difference Laser spectroscopy)	
(Non- classical)	v_2	2456 ⁷³⁾		2217) (IR laser photodissociation spectroscopy)	
	ν_9	845 ⁷³⁾		-no data-	
linear– С ₃ H(²П)	ν_3	1151)	1159.876)	-no data-	
cyclic– C ₃ H(² B ₁)	ν_3	1332 ⁷⁶⁾		-no data-	
	ν_4	940 ⁷⁶⁾		-no data-	
linear– C_3H_2	ν_{4} , ν_{5}	1051, 1080 ⁾	$1003, 999.2^{\circ}$	-no data-	
$cyclic-C_3H_2$	ν_3	1316)	1279 ⁷⁸⁾	1277 ^{(FTIR} absorption spectroscopy)	
	ν_4	913 ⁷⁹⁾	886 ⁷⁸⁾	–no data–	
	ν_6	798 ⁷⁹⁾	788 ⁷⁸⁾	776 ⁷⁹ (FTIR absorption spectroscopy)	
	ν_8	1089 ⁷⁹⁾	1062 ⁷⁸⁾	–no data–	
cyclic- C ₃ H ₃ ⁺	ν_4	3206)	3130.4)	3182 ⁸¹⁾ (IR laser photodissociation spectroscopy)	
	ν_5	1315, 1318 81	1276)	1293 ⁸¹⁾ (IR laser photodissociation spectroscopy)	
	v_6	939 ⁸¹⁾	908 ⁸³⁾	-no data	
HCCCH_{2}^{+}	$v_{6(1)}$	1127^{81}		1111 ⁸¹⁾ (IR laser photodissociation spectroscopy)	
	$v_{6(2)}$	1150^{81}		1222 ⁸¹⁾ (IR laser photodissociation spectroscopy)	
linear– $C_2N(^2\Pi)$	ν ₃		1066)	1046 ⁾ (FTIR emission spectroscopy)	
linear– NCO [–]	v_1	1130)		1210) (IR Laser spectroscopy, by hot band)	
	ν ₃		2156)	2182, 2124 ⁸⁷⁾ (IR Laser spectroscopy, by hot band)	

2011: First Light Observation of GIGMICS

Kanata 1.5-m telescope at HASC, Hiroshima Univ., Altitude: 503m = "Subaru simulator" at Mitaka, NAOJ, until 2005

2011: Jan-Apr, Target: Moon, Proto-Planetary Nebula, and Venus, etc.

GIGMICS with KANATA: 8-13 µm Echellegram toward the moon

- 412 × 4260 mosaic image, Diffration order 420<m<520 Ref: Grating equation: $m\lambda = "n" \times d[sin(\beta) + sin(\gamma)]$
- Assignment of the absorption "spot" by the HITRAN database
- →vibration-rotation transition for
- CO₂:167, H₂O 107, O₃ 78, N₂O 78 lines, 377 in total.
- Least squares fit $\lambda_i = \lambda_i(m, x)$

$$\mathbf{x}_{obs} = -Xc + \frac{192.0}{0.03} \tan\left[\arcsin\left(n\sin\left\{\arcsin\left(\frac{m\lambda_{obs}}{n} - \sin\alpha\right) - \alpha\right\}\right]\right]$$

 \rightarrow fitting rediuals (σ): 3.96 pixel Definite assignment of m \rightarrow daviated +1

初期成果I:惑星状星雲NGC7027での [S IV]輝線のマッピング (M2 青木)

Flux : 中心部を極大とする強度勾配あり
Total Flux 1503Jy from 10"x4" 長円形
Total throughput of Kanata-GIGMICS: ~15%
中心観測点での観測波長 λ_{center}=10.51130 (µm)
赤方偏移 (ref. λ_{rest} =10.5105µm)
V_{LSR} ~22km/s
観測点間での速度差は少ない(σV < 4km/s)
又極ジェットとは独立
ΔV_{FWHM} ~40km/s resolved → T~1,000,000K:

Rest Frequency of [SIV] transition

	λ (μm)	R _{obs}	Reference
Lab. (λ_{rest})	10.5105(1)	100,000	Martin et al. (1990)
ISO-SWS	10.510(5)	2,000	Bernard-Salas et al. (2000)
GIGMICS	10.51130(58) ₁₀	35,000	(ΔV~7.5 km/s)

HST/NICMOS (Latter et al., 2000)

金星大気雲頂領域におけるCO₂の観測(M2 柴田)

- 東広島天文台 かなた望遠鏡
- GIGMICS (Germanium Immersion Grating Mid-Infrared Cryogenic Spectrograph)
- ・2011年4月6日 AM5:50 明けの明星
- 観測波数: 924~988 cm⁻¹

金星大気雲頂領域におけるCO₂の観測(M2 柴田)

• 東広島天文台 かなた望遠鏡

- GIGMICS (Germanium Immersion Grating Mid-Infrared Cryogenic Spectrograph)
- ・2011年4月6日 AM5:50 明けの明星
- 観測波数: 924~988 cm⁻¹

金星大気の放射伝達

- 平行平面大気モデル
- 中間赤外線領域であるため散乱の効果は無視し,
 - 大気分子,雲粒子による吸収のみを考慮

$$I_{\tilde{\nu}} = B_{\tilde{\nu}}(T_{surf}) exp(-\tau_{surf,\tilde{\nu}}) + \int_{0}^{\tau_{surf,\tilde{\nu}}} B_{\tilde{\nu}}(T(\tau_{\tilde{\nu}}')) exp(-\tau_{\tilde{\nu}}') d\tau_{\tilde{\nu}}$$

地表面の放射 透過率 大気の放射 透過率

- 光学的厚さ… Line-by-Line法により算出
- ・標準大気モデル(VIRA), 雲モデル
- 吸収線パラメータ: HITRAN 2008 (CO₂, H₂O, OCS, SO₂)

観測結果とモデルの比較(1)

- 観測された振動回転スペクトル
 - ${}^{12}\text{CO}_2(v_3+v_2) \leftarrow (v_1+v_2) 30$
 - ¹³CO₂ *v*₃← *v*₁ 13本:すべての吸収が"深い"

観測結果とモデルの比較(3)

結果

- ◆ 雲頂付近の¹²CO₂/¹³CO₂=160±32
 - 下層大気(~89)と異なる高い値
 - 同高度領域で異なる¹²CO₂/¹³CO₂比 (Bezard *et al.* (1987))
 - ¹²CO₂と¹³CO₂の同位体分別の過程の存在を示唆

光解離による同位体分別

¹²CO₂と¹³CO₂の光解離波長は厳密には異なる

- 本研究の観測高度域: 65~71km
- ・¹³CO₂の光解離が優先 → 高¹²CO₂/¹³CO₂同位体比

GIGMICS 外部ビューア光学系(海老塚他)

- ① PCX Lens $f=6mm \ \varphi 6$
- (2) CCTV Lens f=50mm F/1.4
- (3) a pair of Half Mirrors
- ④ 光軸記憶用Iris Diaphragm
- ⑤ 結像用PCX Lens f=250mm $\varphi 30$
- 6 Aperture Stop
- (7) Achromatic Lens f=75mm $\varphi 25$
- (8) Plossl Eyepiece *f*=25mm
- (9) CCTV Lens f=12mm F/1.2
- ① CMOS Image Sensor (USBでPCへ)

GIGMICS N-band全域波長校正ガスセル(B4 仲本)

CH4, NH3, C2H4, ~100mmTorr 光路長 100mm, 開口径20mm Material: Pyrex + BaF2 Window Torr-Sealによる接着試験中 目標: "メンテナンスフリー"

3つ目:~1週間圧力変化 無 完成か!と思われたが、、、

ある朝、窓材亀裂

Last Slide: GIGMICS in future

Carry-in instrument proposal submitted Jan. 2013 →Under Preshippment Review in Nagoya Univ. Landing: 2015?

Mounting GIGMICS on Nasmith-IR stage: precise and quick alignment necessary

<u>可動域:5mm(XYZ)</u> 0.4deg (φ、θ)独立 <u>組み立て式、</u> <u>再現可能</u>