## 次世代観測装置用の新しい回折格子の開発状況



Andrea Bianco ${ }^{5}$ ，Filippo MIaria Zerbis，青木和光 6
1名古屋大学 プラズマナノエ学研究セン匀—，
2豐蜔工業大学みノテクプラットフォーム， 3シデズンホールディソグス（誰）關発部，

SINAR Osservationio Astronomico dil Brera，Italy，${ }^{2} \gamma$ の国立気文台 光赤外研究部

第3回 可視赤外線観測装置技術ワークショップ 2013年12月17－18日

## Volume Phase Holographic



## Efficiencies of Transmission Gratings



Surface relief grating: Efficiency decreases steeply below $4 \Lambda / \lambda$.


VPH (Volume Phase Holographic) grating ( $\Delta n \sim 0.02$ ): Efficiency increases up to $100 \%$ below $4 \Lambda / \lambda$. (Oka et. al., SPIE, 5005, 2003)

VPH grism with ZnSe prism

## HOCAS Grisms

Size: $110 \times 106 \times 106$ (max).
4 SR grisms: $300<R<1,400$. 1 Echelle grism: $R \sim 2,500$.

8 VPH grisms ( $\mathbf{3}$ grisms with ZnSe prisms): 1,600 < R < 7,000, Collaboration of JWU (Japan Wemen's Univ.) and NAOJ.



## Limitation of VPH grating <br> 100



Band width of VPH grating becomes narrow in diffraction angle: $\alpha$ increase because semi-amplitude of index modulation of dichromated gelatin (DCG) is $\Delta n<0.15$.
(Baldry et al., PASP, 116, 2004)


Diffraction efficiency of VPH grating decrease toward higher orders.
(Oka et. al., SPIE, 5290, 2004)

## Polarized Diffraction Efficiency of VPH Grating



$$
\eta_{\mathrm{P}}=\sin ^{2}\left\{\frac{\pi\left(n_{\max }-n_{\min }\right) t \cos 2 \theta}{\Lambda\left(n_{\max }+n_{\min }\right) \sin 2 \theta}\right\}
$$



Calculated polarization diffraction efficiencies vs. $\boldsymbol{t}$ of a VPH grating. efficiencies of VPH grating.
$n_{\text {ave }}=\left(n_{\text {max }}-\mathrm{n}_{\text {min }}\right) / 2=1.53$,
$\Lambda=0.984 \mu \mathrm{~m}, t=20 \mu \mathrm{~m}$,
$\theta=19.8^{\circ} @ 1.02 \mu \mathrm{~m}$.
(Ebizuka et. al. PASJ, 63, 2011b)


## IC 434 (Horse-head Nebula)

Ultra-high-sensitivity HDTV I.I. color camera (NHK)
Exp. 22 sec. ( 11 frames coadded) January 16, 1999

Subaru Telescope, National Astronomical Observatory of Japan
Copyright (C) 1999, National Astronomical Observatory of Japan, all rights reserved

## Volume Binary Grating



- $\Delta n=\left(n_{\text {max }}-n_{\text {min }}\right) / 2 \sim 0.5$.
-Polarized diffraction efficiencies of $S$ and $P$ polarization coincide with each other by tuning of $f$ and $t$. While aspect ratio becomes $t: w=1: 20 \sim 100$.


Fig. 1. Scanning electron micrograph of grating lines etched into quartz substrate ( $n_{g}=1.46$ ).
(Gerritsen, Jepsen:
Appl. Opt., 37,1998)

Filling factor: $f=w / \Lambda$

(b)

Fig. ह. (a) First-order diffraction officioncies for a grating with h $=0.55 \mu \mathrm{~m}, \mathrm{~A}=0.3899 \mu \mathrm{~m}, \theta_{\mathrm{D}}=45^{\circ}, n=1.50$, and $f=0.50$. (b) First-ardar diffraction afficiencies for a grating with $\mathrm{h}=0.55 \mu \mathrm{~m}$, $\Lambda=0.3889 \mu \mathrm{~m}, \theta_{\boldsymbol{R}}=45^{\circ}, n=1.50$, and $f=0.80$.
(Gupt \& Peng, Appl. Opt., 32, 1993)

## Volume Binary Grating for Higher Diffraction Orders


$\lambda=0.55 \mathrm{um} . \alpha=20.44^{\circ}\left(=41.3^{\circ} \mathrm{in}\right.$ air). $\mathrm{nH}=1.89 . \mathrm{nL}=1.46 . \mathrm{d}=10 \mathrm{um}$ Configuration 1: ratio 9:1, $\mathrm{d}=11 \mu \mathrm{~m}, \Delta \mathrm{n}=0.19$ TE efficiency

Efficiency at $550 \mathrm{~nm}-9: 1$ extention

$t: w$ (Aspect ratio)
$=1: 22$
(Bianco \& Ebizuka, SPIE, 8450, 2012)

## Photo Resist Grooves with High Aspect Ratio



SEM image of grooves（L\＆S： $10 \mu \mathrm{~m})$ ，tilting with $30^{\circ}$ ． Photo resist：KMPR1000．


Thickness of Grooves

$$
\begin{aligned}
\mathrm{T} & =\frac{46.7[\mu \mathrm{~m}]}{\sin 30^{\circ}} \\
& \fallingdotseq 93[\mu \mathrm{~m}]
\end{aligned}
$$

Cr mask pattern


L\＆S： $10 \mu \mathrm{~m} \rightarrow 1 \mu \mathrm{~m}: 9 \mu \mathrm{~m}$
豊田工業大学ナノテクプラットフォーム

## Birefringence Volume Grating


$\mathrm{H} \alpha, \mathrm{V}, \mathrm{B}$

Ring Nebula (M 57 / NGC 6720)
Subaru Telescope, National Astronomical Observatory of Japan

Suprime-Cam (H $\alpha, \mathrm{V}, \mathrm{B})$
September 16, 1999

## Birefringence VPH Grating



## Birefringence Binary Bragg (3B) Grating



## Polarized Diffraction Efficiency of VPH Grating and 3B Grating



Dicson's VPH grating (Polarizer) calculated by Kogelnik method.


3B grating calculated by RCWA.

$$
\mathrm{n}_{\mathrm{L}}=1.46, \mathrm{n}_{\mathrm{s}}=1.544, \mathrm{n}_{\mathrm{p}}=1.60, \theta_{\mathrm{B}}=45^{\circ} .
$$

$$
w: t(\text { Aspect ratio })=1: 20 \sim 100 \rightarrow 1: 4 \sim 20
$$

## Liquid Crystal Grating（3B Grating）



## Specifications

 Type：replicated grating Groove period（ $\Lambda$ ）： $2 \mu \mathrm{~m}$ （Line \＆space $: 1 \mu \mathrm{~m}$ ） Groove thickness（ t ）： $1 \mu \mathrm{~m}$Orientation layer


Polarizer angle： $60 \sim 70^{\circ}$

Ima
（Grating vector）


diffraction シチズンホールディングス（株）開発部

## Efficiencies of Liquid Crystal (3B) Grating



## Immersion Grating




## Ge Immersion Grating for GIGMICS

(Germanium Immersion Grating Mid-Infrared Cryogenic Spectrograph)


## Wave front ( 633 nm , left) and Far Field Images ( $\mathbf{1 0 . 6 \mathrm { mm } \text { , right) }}$ of Immersion Gratings



The $3^{\text {rd }}$ trial (GaAs), PV: 961nm, rms: 154 nm


The $4^{\text {th }}$ trial (Ge), PV: $583 \mathrm{~nm}, \mathrm{rms}: 87 \mathrm{~nm}$


The $5^{\text {th }}$ trial (Ge), PV: 577 nm, rms: 107 nm

## GIGMICS



R~ 44,000@10um, developed by Hirahara lab., Nagoya Univ. (Hirahara et. al., SPIE, 7735, 2010)

## First Light Observation of GIGMICS



KANATA 1.5m telescope, Higashi-Hiroshima Observatory, Space Science Center Hiroshima Univ., Dec. 2010~Apr. 2011.

## First Scientific Result (1): Venus



Absorption lines cannot be identified to the "telluric lines".
$\rightarrow \mathrm{CO}_{2}$ hot-band \& isotopes from Venus.

# Trial fiabrications of Ge Immersion Greitng Ior R 200,000 



R-200,000@10 $\mu \mathrm{m} \rightarrow$ Size: $120 \times 120 \times 270 \mathrm{~mm}$
$\rightarrow$ Fabrication time: several 1,000 hours


## Quasi-Bragg Immersion Grating



- Machining of dicing saw makes smooth surface
- Easy tooling.
- Fabrication time for grating with $120 \times 120 \times$ $270 \mathrm{~mm} \rightarrow$ Several 100 hours?
(Ebizuka et. al. SPIE, 6273, 2006)


## Trial Fabrication of Quasi-Bragg Grating



A: $10 \times 10 \times 0.2 \times 40$ pcs (left), B: $1.5 \times 10 \times 0.2 \times 40$ pes (right)





Cutting

## Diffraction of Quasi-Bragg Grating



# Fabrication of Immersion Grating for Near IR by Means of Diamond Machining 



Specifications

Material
Wavelength range
Groove period（ $\mathbf{\Lambda}$ ）
Blaze angle $(\alpha) \quad: 60^{\circ}$


Diamond endmil


刃先部詳細図（Free）


Diamond bite

理化学研究所 光量子工学研究領域 先端光学素子開発チーム

## Current and future works

-Trial fabrications of high aspect rectangular grating with duty ratio of $1: 8 \sim 10$.
-Trial fabrications of liquid crystal grating with high aspect ratio.
-Trial fabrications of immersion grating for near IR by means of novel diamond turning methods.
-Trial fabrications of quasi-Bragg immersion grating.

# フォトレジストの深い回折格子は 

豊田工業大学ナノテクプラット フォームの梶原 健 樣と奥村 俊雄 様 に試作していただきました。 この研究は日本科学技術振興機構の A－Step 探索タイプ予算および国立天文台TMT戦略的基礎開発研究経費の支援によって推進されています。
# Thank you for your kind attention! 

