

HIROSHIMA UNIVERSITY 下語でして、京都大学

Hiroshima Optical and

Near-InfraRed Camera

1 HONIRについて

- 「可視赤外線同時カメラHONIR(おにーる)」は、東広島天文台1.5mかなた望遠鏡用の観測装置である(図1、2、表1)。
 2007年に開発を開始し、2011年10月
- 2007年に開発を開始し、2011年10月
 に可視・近赤外線2バンド同時撮像観
 測機能を搭載した(図3)^[1]。

31こ―	
望遠	
₹1)。	
0月	
象観	
を搭	
光素	
七分	
) o	
、偏	

			Optical Arm	IR Ar	m #1 ^(*1)	
波	波長域 (μm)		0.5-1.0	1.1	5-2.40	
ピ	ピクセルスケール		0".29/pixel			
		視野	10' × 10'			
損		フィルター	$B^{(*2)}$, V, R _c , I _c , z', Y	3 ^(*2) , V, R _c , I _c , z', Y Y, J, H, ł		
像	象 (実派	装置効率 則; 望遠鏡込)	4%(B), 21%(V), 20%(R, I)	21%(J) 219	, 29%(H) %(Ks)	
		スリット	1".3(0.12mm), 2".2(0.2mm), 6"(0.54mm)			
分头		リズム略称	optical	IR short	IR long	
元	λ/Δ/	(0.12mmslit)	440(V)~800(z')	630(J)	570(H)~ 600(K)	
偏光 (開発中)		(開発中)	LiYF4 (YLF)製 Wollaston prism + super-achromatic 半波長板 + 専用焦 点マスク			
		種類	完全空乏型CCD (浜松ホトニクス)	HgCdT (Ray	ē VIRGO /theon)	
検出器		フォーマット	2048 × 4096 pix; 15µm /pix	2048 × 2048 p 20µm/pix		
		読み出し システム	Messia 5 + MFront 2	Messia 5 + MACS2		
(*1) (*2)) 将来は) 部分的	1.15-1.35µmと に透過	1.45-2.4µmの2 arms Optical Image : B, R, I-ban	6に分離予 d ; 10' x 16' (mosaic	定。	
		Hiroshima Op Near-infrared	otical and I Camera			
		RION NEBU	JLA		_	
	Name	M42				
	Near	-infrared Image : J, H, Ks-bar	nd; 9' x 10'		_	
	24					
					_	
		Sec. 1		· · · ·	_	
			Start Contractor			
		a de la competencia		19		
		Hiroshi <u>ma Astrophysical Sc</u>	ience Center <u>, Hiroshima University</u>		4	

2 分光機能の搭載

- □ HONIRの分光機能は、入射焦点面にスリットマスク、ダイクロ イックミラー以降の各バンドの平行光線部にグリズムを挿入す ることで実現する(図2)。
- 可視バンドはグリズム1種で全波長域をカバーする。近赤外線 バンドは、JバンドとH-Kバンドでグリズムを選択して用いる。
- □ グリズムは、 0 20mm (2 2")ス

表2 :グリズムの設計仕様

_______________近赤外線 _近赤外線

さらに2013年1月に分光観測機能を搭載した。また、2014年1月には、偏光素子を導入することで偏光撮像・偏光分光観測機能も搭載する予定である。
 分光観測機能の性能評価、および、偏光観測機能搭載に向けた現状について報告する。

図2: HONIRの光学設計(左)と実際の素子配置(右)

図1:かなた望遠鏡とHONIR

HPK CCD

図3: M42撮像例(疑似3色合成)。 (左)近赤外線(J, H, Ks)、(右) B, V, R

0.2011111 (2.2)	
リットにおいて超新	
	波
星や新星等のスペク	中
トル線を十分速度分	設
	解
解できる R~350	\ //
	材
(ΔV~860 KM/S)を连	W
成できるように設計・	Gr
	(gi
制作した(表2、凶4)。	Bla

			(optical)	Jバンド用 (IR short)	H-Kバンド用 (IR long)
	波長帯(μm)	0.41-0.97	1.07-1.43	1.50-2.40
	中心波長	ŧ (μm)	0.683	1.232	1.933
	設計分	0.20 mm slit (2.2")	330	354	371
	<u> </u>	0.12 mm slit (1.3")	550	590	618
	材質		BK7	BK7	S-FTM16
	Wedge	角(°)	21.5	23.5	22.5
	Groove: (gr/mm)	S	300	180	120
	Blaze a	ngle (°)	23.0	23.9	26.7
	Groove	pattern	54-039R	54-870R	54-831R
	大きさ (r	nm)	51 × 51 × 21	59 × 59 × 27	59 × 59 × 26
	有効径(mm)	47	55	55

図4 : 導入された分光素子。(a) スリットマスク群(左上は実験用ピンホール)、(b)可視バンド用グリズム、(c)近赤外線Jバンド用グリズム(IR-short)

3 分光性能評価

<u>(1) 波長分解能</u>

室内蛍光灯の輝線幅をもとに、波長分解能 R(=λ/Δλ)を測定した。

<u>(3) 分光透過効率</u>

□ 分光測光標準星^[2,3]をスリットレス分光し、分光透過効率(望遠鏡込み)を測定した。

□ 0.12mm(1.3")スリットの場合、可視で R~440(V)~800(z')、近赤外線IR-shortグリズ ムで 630 (J)、IR-longグリズムで570(H)~600(K) (図5)。およそ設計仕様を満たす。

図5:波長分解能の測定結果。0.12mm slit(赤)、0.20mm slit(青)、0.54mm slit(緑)。(a)可視 グリズム、(b)近赤外線IR-shortグリズム、(c)近赤外線IR-longグリズム。

 (2) 分光限界等級
 1.3"スリット・300秒積分において、Hバンドで~13.8 mag、 Ksバンドで~12.6 magの天体のスペクトルを淡く検出できている(図6)。詳細な定量評価を進めている。

10jl; 2013/01/31; 300 sec x 2 (nodding)	<u>(4) 観</u>
	□ 超新星
H 3.8 mag	前主系
tambda	Rayet
Ks	を実施
2.6 mag	図8 : (a) V で規格化)

図6:SN2010jlの分光画像例

図8 : (a) Wolf-Rayet 星 WR006 (連続光 で規格化)、(b)(c) 新星 Nova Cep 2013 (京産大新井氏との共同研究)

□ 可視の主要な観測域で10-20%、近赤外線で15-20%であった(図7)。 □ 2次分散光の混入が生じている。オーダーカットフィルター (可視用 <0.55µmカット、近赤外線用<1.33µmカット)を導入して適宜併用する。

図7:分光測光標準星観測から推定した分光透過効率(望遠鏡込み)。

今後の開発

4 偏光観測機能搭載に向けて

□ 半波長板、Wollaston prism(WP)、偏光観測専用焦点マスクを光路に設置し、直(a)

14本のスペクトルが結像。

□ 偏光観測モードを搭載しての試験観測(2014/1-)

線偏光の偏光撮像・偏光分光観測機能を搭載する。偏光度測定精度 0.1%以下 を目指す。2014年1月に、望遠鏡上での初の偏光試験観測を行う予定である。 □ 半波長板は、有効径92mmのPancharatnam型super-achomatic半波長板で ある(図9(a))。入射窓前の常温部に配置する。偏光観測時に挿入し、任意角度に 回転して用いる(挿入・回転機構については本WS浦野発表参照)。 (a) □ WPはYLF(フッ化イットリウムリチウム)のものを設計・製作した(図9(b))。冷却下 のcold stop位置に配置する。YLF材は可視・近赤外線全体で透過し、偏光分離 角が大きく(偏光撮像時の視野が広い)、かつ色分散が小さい(偏光撮像時の像伸) びを軽減)。異なる光学軸間の線膨張率差が小さい(熱サイクルに強い)。 (b) □ WPで分離する像の重なりを避けるため、一定間隔ごとに視野を遮ったマスクを 焦点面に配する(図10;。器械偏光生成を避けるため、材質には、金属ではなくマ シナブルセラミックス(有明マテリアル/黒崎播磨 マセライトHSP・黒色)を用いる。 □ 2013年11月に、装置内を冷却した上でWP越しに焦点ピンホール像を分光し、設 計通りの分離角で直交偏光2成分の偏光スペクトルが得られることを確認した(図) 10)。 点マスク

日長期間装置を望遠鏡に装着した安定運用へ
 近赤外線検出器駆動システムの刷新(本WS宇井発表参照): 読み出しシステムの老朽化対応、16ch同時読出し(現状4ch同時読み出し)による高速化
 オフセットガイダーの導入(時期未定)
 3バンド同時観測化::検出器を手配でき次第。(時期未定)

References

- [1] Sakimoto et al. 2012, Proc. SPIE, 8446, 844673
 [2] Rayner et al. 2009, ApJS, 185, 289 (http://irtfweb.ifa.hawaii.edu/~spex/IRTF_Spect ral_Library/)
- [3] Hamuy et al. 1992, PASP, 104, 533

