

(Classical) Novae: (古典) 新星、新星爆発

- Historically, a nova means "a new star" in Latin.
 - Sudden (~ 1 d) appearance of apparently "new" star.
- However, novae are not caused by a new stars, but they are transient events on a existing stars.
 - They typically brighten by ~ 10 mag in V-band.
 - At least by ~ 7 mag, at maximum ~ 19 mag.
 - They gradually fade typically for weaks years.
- Their maximum absolute V magnitudes are between -6 and -10.
 - \rightarrow Observable novae: only in our galaxy, MCs (+ M31, etc).
 - Too faint compared to supernovae.
 - Too bright compared to dwarf novae.

1. Before TNR, WD is faint.

Spectrum of Nova V659 Sct, 1 day after its Discovery (Observed in Seimei Openuse 19B-N-CT03)

- This P Cygni profile suggests optically thick winds.
 → This nova had optically thick wind, 1 day after its discovery.
- This is consistent with the "optically thick wind theory" by Kato & Hachisu.

- Nearby optical peak magnitude, many lines of P Cygni profiles are in spectrum
 - Blue-shifted absorption
 - Emission at almost rest wavelength

V659 Sct (2019/10/30), nearby H α

2021-12-09 (Arima 2021 @ Kyoto)

A Super-early Follow-up of the Recurrent Nova T Pyx (Arai et al. 2015)

2021/12/9

^{2021-12-09 (}Arima 2021 @ Kyoto)

2021/12/9

2021-12-09 (Arima 2021 @ Kyoto)

9

About CMFGEN

- We use the radiative transfer code CMFGEN (Hillier and Miller 1998) to calculate the expected spectra of novae of model systems.
 - This code solves non-LTE rate equation, radiative transfer equation, and electron temperature selfconsistently in spherical geometry.
 - We regard the structure of nova system (White Dwarf + maybe ejecta) as the same of that of windblowing stars, which this code prefers.
 - We approximate nova system steady (like H II regions).

Nova is an Expanding System

- Nova photosphere expands typically upto ~ 100 R_{\odot} (~ 1000 km/s \times 1 day)
 - Ejecta front continues to expand (to ~ $10^3/10^4 R_{\odot}$ in ~ 10/100 days)

Three Requirements in Computing Nova Spectra

- Requirements to the transfer equation $\left(\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}\right)$
 - Spherical Geometry
 - Blowing Winds
- Requirements to the absorbability/emissivity:
 - Non-LTE

Plane Parallelism vs Spherical Geometry

- Plane Parallelism
 - The upper plane is effectively parallel to the bottom plane.
 - So, $dz = ds \cos \theta$ or $\frac{d}{ds} = \cos \theta \frac{d}{dz}$
 - Solar Photosphere (~ 10^{11} cm) \gg Chromosphere (~ 10^{8-9} cm)
- In novae, plane parallelism is invalid.
 - Instead, considering in spherical geometry is needed
 - θ changes along the ray of light!

Appendix: $\frac{d}{ds}$ in the Spherical Geometry + Wind

r + dr

r

- Considering total derivative, $\frac{d}{ds} = \frac{dr}{ds}\frac{\partial}{\partial r} \frac{d\theta}{ds}\frac{\partial}{\partial \theta}$
- From the figure, $dr = ds \cos \theta$ and $d\theta = -\frac{\sin \theta}{r} ds$

• So,
$$\frac{\mathrm{d}r}{\mathrm{d}s} = \cos\theta$$
 and $\frac{\mathrm{d}\theta}{\mathrm{d}s} = -\frac{\sin\theta}{r}$

- If there is an outward velocity field v(r),
 - Non-relativistic Doppler shift in frequency:

•
$$dv = -\frac{v}{c} [v(r + dr) \cos(\theta + d\theta) - v(r) \cos\theta]$$

 $\rightarrow dv \approx -\frac{vv(r)}{cr} [\sin^2 \theta + \frac{d \ln v}{d \ln r} \cos^2 \theta] ds$
• So, $\frac{d}{ds} = \cos \theta \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} - \frac{vv(r)}{cr} [\sin^2 \theta + \frac{d \ln v}{d \ln r} \cos^2 \theta] \frac{\partial}{\partial \theta}$

Categories of Spectrum Calculation Codes

• Radiative transfer equation (including scattering in j_{ν} and α_{ν}):

$$\mu \frac{\partial I_{\nu}(r,\mu)}{\partial r} + \frac{1-\mu^2}{r} \frac{\partial I_{\nu}(r,\mu)}{\partial \mu} - \frac{\nu v(r)}{rc} \left[\sin^2 \theta + \frac{d \ln v}{d \ln r} \cos^2 \theta \right] \frac{\partial I_{\nu}(r,\mu)}{\partial \nu} = j_{\nu}(r) - \alpha_{\nu}(r) I_{\nu}(r,\mu)$$

• For coherent, isotropic scattering, $\alpha_{\nu} = n_e \sigma_e$ and $j_{\nu} = n_e \sigma_e J_{\nu} (J_{\nu} = \int I_{\nu} \frac{d\Omega}{4\pi}$: mean intensity)

- Monte-Carlo codes are sometimes used.
 - They enable including many lines and calculating line force easier.
 - However, the ionization structure and the source functions are somewhat ad hoc.
- So, we are going to view **difference methods**.
 - CMFGEN, PHOENIX belong to this category.

Impact parameter method

- Solve the radiative transfer (RT) equation in spherical geometry along p = const rays.
 - For each *r*, there are many rays.
 - Each ray is different in p (or θ).
 - Observed spectrum is sum of intensities on r_0 .

2021-12-09 (Arima 2021 @ Kyoto)

Impact parameter method

- Solve the radiative transfer (RT) equation in spherical geometry along p = const rays.
 - For each *r*, there are many rays.
 - Each ray is different in p (or θ).
 - Observed spectrum is sum of intensities on r_0 .
- Without scattering, O depends on

 \rightarrow tridiagonal.

2021-12-09 (Arima 2021 @ Kyoto)

Impact parameter method

- Solve the radiative transfer (RT) equation in spherical geometry along p = const rays.
 - For each *r*, there are many rays.
 - Each ray is different in p (or θ).
 - Observed spectrum is sum of intensities on r_0 .
- Without scattering, O depends on → tridiagonal.
- With scattering, also depends on ▲
 → difficult to compute!

 (though it's still "tridiagonal" vectoring and ▲)

Appendix. Feautrier Method

- $I_{\nu}^{+/-}$: upward/downward specific intensity
- From the transfer equation,

•
$$\frac{\partial I_{\nu}^{+}}{\partial z} - \frac{\nu v(r)}{cr} \left(1 - \mu^{2} + \mu^{2} \frac{d \ln v}{d \ln r}\right) \frac{\partial I_{\nu}^{+}}{\partial \nu} = -\alpha_{\nu} I_{\nu}^{+} + j_{\nu}$$

•
$$-\frac{\partial I_{\nu}^{-}}{\partial z} - \frac{\nu v(r)}{cr} \left(1 - \mu^{2} + \mu^{2} \frac{d \ln v}{d \ln r}\right) \frac{\partial I_{\nu}^{-}}{\partial \nu} = -\alpha_{\nu} I_{\nu}^{-} + j_{\nu}$$

• Feautrier variables (Feautrier 1964):

•
$$\mathcal{I}_{\nu} = \frac{I^+ + I^-}{2}$$
 and $\mathcal{H} = \frac{I^+ - I^-}{2}$

 \rightarrow equations:

•
$$\frac{\partial \mathcal{I}_{\nu}}{\partial z} = \frac{\nu v(r)}{cr} \left(1 - \mu^{2} + \mu^{2} \frac{d \ln v}{d \ln r} \right) \frac{\partial \mathcal{H}_{\nu}^{+}}{\partial \nu} - \alpha_{\nu} \mathcal{H}_{\nu}$$

•
$$\frac{\partial \mathcal{H}_{\nu}}{\partial z} = \frac{\nu v(r)}{cr} \left(1 - \mu^{2} + \mu^{2} \frac{d \ln v}{d \ln r} \right) \frac{\partial \mathcal{J}_{\nu}^{+}}{\partial \nu} - \alpha_{\nu} \mathcal{J}_{\nu} + j_{\nu}$$

2021/12/9 2021-12-09 (Arima 2021 @ Kyoto)

Moment Equation

• Radiative transfer equation (including scattering: for coherent):

$$\mu \frac{\partial I_{\nu}(r,\mu)}{\partial r} + \frac{1-\mu^2}{r} \frac{\partial I_{\nu}(r,\mu)}{\partial \mu} - \frac{\nu v(r)}{rc} \left[\sin^2 \theta + \frac{d \ln v}{d \ln r} \cos^2 \theta \right] \frac{\partial I_{\nu}(r,\mu)}{\partial \nu} = j_{\nu}(r) - \alpha_{\nu}(r) I_{\nu}(r,\mu)$$

• For coherent, isotropic scattering, $\alpha_{\nu} = n_e \sigma_e$ and $j_{\nu} = n_e \sigma_e J_{\nu} (J_{\nu} = \int I_{\nu} \frac{d\Omega}{4\pi}$: mean intensity)

• 0th and 1st order moment equations:

•
$$\frac{1}{r^2} \frac{\partial (r^2 H)}{\partial r} - \frac{vv}{rc} \left[\frac{\partial (J-K)}{\partial v} + \frac{d \ln v}{d \ln r} \frac{\partial K}{\partial v} \right] = j_v - \alpha_v J$$

•
$$\frac{\partial K}{\partial r} + \frac{3K-J}{r} - \frac{vv}{rc} \left[\frac{\partial (H-N)}{\partial v} + \frac{d \ln v}{d \ln r} \frac{\partial N}{\partial v} \right] = -\alpha_v H$$

• Here, $[J, H, K, N] = \frac{1}{2} \int_{-1}^{1} I_v(r, \mu) [1, \mu, \mu^2, \mu^3] d\mu$

Eddington Factors

•
$$f(r, v) = \frac{K(r, v)}{J(r, v)}$$
 and $g(r, v) = \frac{N(r, v)}{H(r, v)}$ or $g'(r, v) = \frac{N(r, v)}{J(r, v)}$

2021/12/9

2021-12-09 (Arima 2021 @ Kyoto)

Variable Eddington Factors

- Oth and 1st order moment equations: • $\frac{1}{r^2} \frac{\partial (r^2 H)}{\partial r} - \frac{\nu v}{rc} \left[\frac{\partial (J-K)}{\partial v} + \frac{d \ln v}{d \ln r} \frac{\partial K}{\partial v} \right] = j_v - \alpha_v J$ • $\frac{\partial K}{\partial r} + \frac{3K-J}{r} - \frac{\nu v}{rc} \left[\frac{\partial (H-N)}{\partial v} + \frac{d \ln v}{d \ln r} \frac{\partial N}{\partial v} \right] = -\alpha_v H$ • Here, $[J, H, K, N] = \frac{1}{2} \int_{-1}^{1} I_v(r, \mu) [1, \mu, \mu^2, \mu^3] d\mu$ (four unknowns!)
- Eddington factors

•
$$f(r,v) = \frac{K(r,v)}{J(r,v)}$$
 and $g(r,v) = \frac{N(r,v)}{H(r,v)}$ or $g'(r,v) = \frac{N(r,v)}{J(r,v)}$

- Assuming two Eddington factors are known, we can solve J, H, K, N.
 - \rightarrow We can regard the scattering emissivity (e.g., $j_{\nu} = n_{\rm e}\sigma_{\rm e}J_{\nu}$) "known"
 - Without scattering, \bigcirc depends only on $\bigcirc \rightarrow$ easy to compute I_{ν} !

(From I_{ν} , we can compute moments J, H, K, N and Eddington factors \rightarrow iteratable!)

2021/12/9

2021-12-09 (Arima 2021 @ Kyoto)

Observer

 $^{\uparrow}Z$

Three Requirements in Computing Nova Spectra

- Requirements to the transfer equation $\left(\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}\right)$
 - Spherical Geometry
 - Blowing Winds
- Requirements to the absorbability/emissivity:
 - Non-LTE

Non-LTE

- LTE (Local Thermal Equilibrium)
 - The statistical distribution between levels is Canonical ($\propto \exp(-E/k_BT)$) at all (spatial) points (= local).
 - Saha equation between different ionization stages is also available.
 - T decides everything!
- Non-LTE (non-Local Thermal Equilibrium)
 - Low density and high temperature → Photons break Canonical distribution!
 - The effect of photo-ionization/excitation is not negligible or greater than that of collisional ionization/excitation.
 - So, Boltzmann, Saha, and Kirchhoff are incorrect in non-LTE.
 - \rightarrow The statistical distributions should also be solved!
 - (e.g., Detailed balance between two levels: $n_l(B_{lu} J_{ul} + C_{lu}) = n_u(A_{ul} + B_{ul} J_{ul} + C_{ul})$)
 - J_{ul} is also depending on n_l , n_u through the radiation transfer equation!

• So, the level populations need to be solved simultaneously with the transfer equation! (Energy, charge, and total number conservation are also need to be solved)

Newton Scheme for non-LTE

- Physical state vector at $r = r_d$:
 - $\boldsymbol{\psi}_d = \left(T_d^{\text{e}}, n_d^{\text{e}}, n_d^{\text{1}}, n_d^{\text{2}}, \cdots, n_d^{\text{NL}}, J_d^{\text{1}}, J_d^{\text{2}}, \cdots, J_d^{\text{NF}}\right)$
 - NL: number of levels, NF: number of frequency points
- General form of constraint equation(s) at $r = r_d$:
 - $\boldsymbol{P}_d(\boldsymbol{\psi}_d) = 0$
- Iterative calculation:
 - (Exact solution ψ_d) = (Nearby, imperfect solution ψ_d^0) + (Correction $\delta \psi_d$)
 - \rightarrow Taylor expansion up to 1st order: $\sum_{j} \frac{\partial P_d}{\partial \psi_{d,j}} \delta \psi_{d,j} = -P_d(\Psi_d^0)$

Radiative Transfer to simplify non-LTE

- Considering removing δJ_d^f from $\sum_j \frac{\partial P_d}{\partial \psi_{d,j}} \delta \psi_{d,j} = -P_d(\Psi_d^0)$
 - From radiative transfer equation, $\delta J_d^f = \sum_{d'=1}^{ND} \left(\sum_{l=1}^{NL} \frac{\partial J_d^f}{\partial n_{d'}^l} \delta n_{d'}^l + \frac{\partial J_d^f}{\partial n_{d'}^e} \delta n_{d'}^e + \frac{\partial J_d^f}{\partial T_{d'}^e} \delta T_{d'}^e \right)$
 - In practical, CMFGEN uses d' = d 1, d, d + 1 to decrease the computation.
 - Here, J_d^f is determined by the same inverse matrix as VEF equation.