Panchromatic Analysis of Galactic Planetary Nebulae with Kyoto IFU M. Otsuka (ASIAA), T. Ueta (U. of Denver), Y.-H. Chu (ASIAA)

Stellar Evolution and Material Recycling between the stars and the host Galaxy

AGB 星/PN は銀河の化学進化において重要な天体

PN as Gas-Dust Dynamical Systems

X/UV/Optical Lines

Mid/Far-IR Lines,Cont

NGC 6543 中心星

「PNの元素合成とISMの化学組成の比較を通し、 宇宙の中小質量星の役割」

をPNの「空間分解した」<mark>紫外-可視(KOOLS-IFU)</mark> から遠赤外観測データで明らかにする。

PN研究から明らかにしたいこと

「PNの元素合成とISMの化学組成の比較を通してみる宇宙における中小質量星の役割」

具体的には、PNの「空間分解した」紫外-可視(KOOLS-IFU)から遠赤外観測データ(Herschelと Spitzer)を使って、

ガス密度/温度マップ/化学組成マップ
 ガス質量、ダスト質量マップ

を導出し「中心星から放出された金属に富むガスがどのようにISMにまで拡散していくのか?」をみ ていく。

KOOLS-IFU: 中心星、中心星周囲の熱いガスからPDR

Spitzer: PDR、熱いダスト/分子 Herschel: PDR、冷たいダスト/分子

「同じ観測領域」を紫外-可視/中間赤外/遠赤外観測でみることが各種物理量導出のカギ ガイダー、ローテータ、「波長分解能に見合った」波長カリブレーション用ランプ(ラインがあり すぎるとラインがマージして使えないことがある)、Extinction vs 波長テーブルの整備は必須。

Keck ESI archive Spatially-resolved spectrum of NGC2392

輝線強度に空間変化がある(温度、密度、ガス分布は不均一)。よって、空間情報を キープした輝線マップを使ってガス診断するのが必須。しかし、アーカイブデー タの多くは上のような1-Dスペクトル。空間分解しているデータがどうしても必要。

Plasma diagnostics of PNe

, 「PNとは Te(電子温度) =10⁴ K、 ne (電子密度) = 10⁴ cm⁻³で一定のプラズマボール」ではない。

 「エネルギーポテンシャルが異なる診断ラインの検出」、「2D輝線マップ」がlonized gas regions とPDRsを完全トレースするために必須。 CEL: collisional excited line RL: recombination line

ID	CEL n_e -diagnostic line	Value	Result (cm ⁻³)
N-1	[N I] 5197 Å/5200 Å	1.345 ± 0.053	920 ± 110
N-2	[S II] 6717 Å/6731 Å	0.584 ± 0.015	4360 ± 490
N-3	[O II] 3726 Å/3729 Å	1.773 ± 0.067	3340 ± 400
N-4	[S III] 18.7 µm/33.5 µm	2.886 ± 0.245	10620 ± 1820
N-5	[Cl III] 5517 Å/5537 Å	0.683 ± 0.020	8170 ± 690
N-6	[CUV] 11.8 µm/20.3 µm	1.361 ± 0.178	46800 ± 1700
N-7	[Ar IV] 4711 Å/4740 Å	0.879 ± 0.016	5920 ± 330
N-8	[Ne v] 14.3 µm/24.3 µm	1.749 ± 0.147	6780 ± 1290
ID	CEL n_e -diagnostic line	Value	Result (K)
T-1	[O I] (6300/63 Å)/5577 Å	96.719 ± 7.203	8500 ± 200
T-2	[N II] (6548/83 Å)/5755 Å	57.138 ± 1.147	12050 ± 120
T-3	[S III] 9069 Å/6313 Å	9.023 ± 0.282	10130 ± 140
T-4	[Ar III] (7751/7135 Å)/5191 Å	125.043 ± 9.734	11290 ± 360
T-5	[O III] (4959/5007 Å)/4363 Å	92.925 ± 1.499	13140 ± 80
T-6	[Cl IV] (11.8 µm/20.3 µm)/7531 Å	4.031 ± 0.292	14790 ± 870
T-7	[Ar IV] (4711/40 Å)/(7170/7262 Å)	25.503 ± 0.893	15170 ± 420
T-8	[Ne III] (15.8 µm)/(3869/3967 Å)	0.745 ± 0.045	11650 ± 230
T-9	[Ar V] 13.10 µm/6435 Å	5.731 ± 0.189	17450 ± 390
T-10	[Ne IV] 2425 Å/(4714/15/24/26 Å)	77.386 ± 4.338	16260 ± 5000
ID	CEL Te/ne-diagnostic line	Value	Result (cm ⁻³)
TN-1	[S II] (4069/76 Å)/(6717/31 Å)	3.180 ± 0.206	12180 ± 1060
TN-2	[O II] (3726/29 Å)/(7320/30 Å)	10.682 ± 0.198	13420 ± 220
TN-3	[S III] (18.7/33.5 µm)/9069 Å	1.798 ± 0.097	11290 ± 360
	RL T_{e} -diagnostic line	Value	Result (K)
	He 1 7281 Å/6678 Å	0.204 ± 0.006	9290 ± 280
	He I 6678 Å/5876 Å	0.267 ± 0.005	9700 ± 500
	$[I_{\lambda}(8194 \text{ \AA}) - I_{\lambda}(8169 \text{ \AA})]/I(P11)$	0.022 ± 0.003	9140 ± 2540

Otsuka in prep.

アバンダンスアナリシスでのTe決定の重要性

Line emissivity (ε)t

[N II] 6583 Å: 8.48E-21 erg s⁻¹ cm³ in 12000 K \rightarrow 6.36E-21 erg s⁻¹ cm³ in 10000 K (~25% I) [N II] 5755 Å: 1.80E-22 erg s⁻¹ cm³ in 12000 K \rightarrow 8.96E-23 erg s⁻¹ cm³ in 10000 K (~50% I) H β : 1.07E-25 erg s⁻¹ cm³ in 12000 K \rightarrow 1.26E-25 erg s⁻¹ cm³ in 10000 K (~15% 1)

水素数密度 n(H+)に対するN+数密度n(N+)比は

n(N+)/n(H+) = l(λ)/l(H β) * (ϵ (λ)/ ϵ (H β))-¹、l(λ): ラインフラックス ただし、H β は必須なラインではなく、H l 12.3 μ m (in mid-IR)やH α でもよい。

N+/H+アバンダンスは2000 Kの違いでトータルで>30% in [N II] 6583Å、>50% in [N II]5755Åの差。 コレクションファクタの不定性も考慮すると、エレメンタルNアバンダンスの不定性はさらに大きくなる。

2D Plasma diagnostics: the case of NGC6781

した輝線マップを使ってガス診断するのが必須。

Gas, Dust, Gas-to-Dust Mass Ratio

 ガス-ダスト質量比は銀河の物質進 化を理解する上でもキーとなるパ ラメータ。「ガス-ダスト質量比は 100で一定」というのは太陽近傍 十数天体の平均であることに注意。

「ガスとダストがどのように混在 し、そのマス比はどれくらいなの か」を、空間情報保持したPNデー タを使って調べたい。

KOOLS-IFUでガスマスを調査する

KOOLS-IFUでしたいこと

2-Dエレメンタルアバンダンス/ガスマスマップの調査

PN NGC2392のGMOS データとHerschel/Spitzerデータをつかって結果をシミュ レート。PN内のエレメンタルアバンダンスの均一/非均一性をみる。

- データ取得日: 2018 Jan 4 and 10
- 使用グレーティング: B1200 for 3700-5300 Å and R400 for 4600-9200 Å、
 KOOLS-VPHのRと大体同じ。GMOSとKOOLSで採用しているチップも同じ。

NGC 2392

- D ~ 1 kpc
- ・電離ガス半径~25" (~0.12 pc)
- Teff~40000 Kの明るい中心星(mV=10.53, from HST/F555W)
- 中心星からの>1000 km/sの恒星風とAGB フェイズ末期にイジェクトされたガスとのイ ンタラクションによってできたX-ray shockedガス (~10⁶ K、ne=30 cc)
- X-ray shocked ガスを取りまくTe~13000 ([N II]) -18000 ([O III]) KのPNガスシェル
- 多数のクランプ状ガス。Cometary knots。
- シリケイトダストがPNシェル内に混在。

NGC 2392

- D ~ 1 kpc
- ・電離ガス半径~25" (~0.12 pc)
- Teff~40000 Kの明るい中心星(mV=10.53, from HST/F555W)
- 中心星からの>1000 km/sの恒星風とAGB フェイズ末期にイジェクトされたガスとのイ ンタラクションによってできたX-ray shockedガス (~10⁶ K、ne=30 cc)
- X-ray shocked ガスを取りまくTe~13000 ([N II]) -18000 ([O III]) KのPNガスシェル
- 多数のクランプ状ガス。Cometary knots。
- シリケイトダストがPNシェル内に混在。

Emission Line maps

- マップ総数60本以上 (as of 2018 Feb 6)
 - He I, II, [N II], [O II, III], [Ne III], [S II, III], [CI II, III, IV], [Ar III, IV], [Fe III], Mg I]
 - IR: [O III, IV], [Ne II, III, V], [Ar II, III], [S III, IV]
- H Iライン強度比を使い減光マップ作成でフラックスを補正後、ne([Fe III])、ne([O II])、ne([CI III])、ne([Ar IV])、ne([O III])、Te([S II])、Te([S II])、Te([S III])、Te([O III])、Te(Hel)のマップをえる。

Emission Line maps

- マップ総数60本以上 (as of 2018 Feb 6)
 - He I, II, [N II], [O II, III], [Ne III], [S II, III], [CI II, III, IV], [Ar III, IV], [Fe III], Mg I]
 - IR: [O III, IV], [Ne II, III, V], [Ar II, III], [S III, IV]
- H Iライン強度比を使い減光マップ作成でフラックスを補正後、ne([Fe III])、ne([O II])、ne([CI III])、ne([Ar IV])、ne([O III])、Te([S II])、Te([N II]), Te([S III])、Te([O III])、Te(HeI)のマップをえる。

ne([S II])

- X-ray shockedガス (~10⁶ K、ne=30 cc)とPNガスとのinteraction regions でne >2000-3000 cc、中心星ウインドでガスがパイルアップされたため。
- Cometary knotsは周辺ガスに比べ密度に比べて高い。

Te([O III])

- X-ray shockedガス (~10⁶ K、ne=30 cc)とPNガスのinteraction regionsでne=2000-5000cc & Te~10000-15000 K。ガスプレッ シャー定としたときに見積もられるTe と大体あう。
- Cometary knotsは周囲のガスに比べ温度が低い。

He+, He²⁺

- He+: He I 4026, 4388, 4471, 4922, 5015, 5048, 5876, 6678, 7065, 7281 Åの平均。
- He²⁺: He II 4686 Å
- He ionic abundancesを計算するために、Hel I(7281 Å)/I(6678 Å)比マップ、Te(Hel)マップ、そしてline emissivityマップを得る。

S+, S²⁺, S³⁺

- S+: [S II] 4068, 4078, 6717, 6731 Åの平均。
- S²⁺: [S III] 6312, 9069Åの平均。
- S³⁺: Spitzer [S IV] 10.51 $\mu\,\mathrm{m}$
- S+, S²⁺, S³⁺ マップを計算するために、Te([S II], [S III], [O III])マップとne([S II], [O III])マップを適用。各ピクセルで> 5 energy levels間でpopulationを計算し、line emissivityマップを得る。

$2-D \varepsilon$ (X) maps

 $n(X)/n(H) = \sum n(X^{i+})/n(H^{+})$ $\epsilon(X) = \log_{10} n(X)/n(H) + 12$

X	<ɛ(X)>	1- <i>σ</i>	Min-Max
He	11.02	0.08	10.64-11.23
Ν	7.95	0.18	7.40-8.52
0	8.13	0.10	7.79-8.46
Ne	7.63	0.10	7.35-7.88
Mg	4.49	0.38	3.27-5.30
S	6.78	0.15	6.19-7.21
CI	4.59	0.37	3.65-5.68
Ar	6.03	0.11	5.51-6.40
Fe	5.87	0.36	4.76-6.46

元素組成の空間分布は一様ではない

8.25

6.72

6.54

6.28

6.21

6.05

5.98

5.82

[S II] Velocity channel maps

Velocity mapを使うことで、1) アバンダンス非均一性とキネマティ クスとの関係、2) 非等方性を含むマスロスレートの調査を行う。

Spitzer 18μ m Silicate, PACS70 μ m, [Fe III], Mg I]

X-ray ショックによってシリケイトグレインが破壊、Fe、Mg原子がリリースされているという解釈。 18μmのピークは粉砕されたサイズ小のシリケイトか?[Si II] 34μmも[FellI]とMg I]と同じような空間分 布。Mg、Fe、Siのマス比からシリケイトグレイン組成比を推測、ダストマス見積もりの不定性を減らす。

C-rich PNの場合は、ダストエミッションマップ(例えば、SiC 11 μ m、16-24 μ m broad feature, 21 μ m emission, FeO, MgSなど)とC/Mg/Si/S/Feアバンダンスマップとの比較から、カーボン系ダスト グレイン組成比を推測する(たとえば、Otsuka 2015, MNRAS, 452, 4070)。

必要観測時間

- 第一にR >30"のPNをサンプルする。heliocentric distance~1.7 kpc以内 にあるもので airmass < 2なPN。lonized gas regionsと PDRsをカバー。
- 次に、5 GHz Flux densityからextinction free Hß surface brightness
 を計算、F(Hß) > 2E-14 erg/s/cm2/arcsec²であるPN33天体を選んだ。
- KOOLS-IFU grism No.2とVPH495を選択。
 H ß surface brightnessの~1/100のライン(例えば、[Fe III] 4881 Å)も SNR > 3で検出し、ネビュラ全体をカバーするには、No.2 とVPH495で (2700 sec x 6 pointings x 2+ overhead) x 2 set ~18 hours per a PN。

Backup

Stellar absorption analysis

- PNはoptically thinなので、nebulaと中心 星の物理状態を同時に診断できる。
- 中心星の吸収線解析をすることで、光球化
 学組成、有効温度(Teff)、重力加速度がえられる。
- 中心星を再現する合成スペクトルを波長全 域で積分することで輝度(L)をえる。
- TeffとLをHR-diagramにプロットすることで、初期質量をみつもることができる。

HDS study of PN SaSt2-3 Otsuka 2017, submitted to MNRAS

Elemental abundances

PNの化学組成は、「親星が形成された時のISM化学組成」と「中 心星の核融合によって合成された化学組成」を反映