KOOLS-IFU Workshop 東京大学木曽観測所 Tomo-e Gozen と KOOLS-IFU のシナジー

Table of Contents

 about the Tomo-e Gozen Project specifications of the Tomo-e Gozen camera current status of the Tomo-e Gozen project

2. possible collaborations with KOOLS-IFU

Tomo-e Gozen A ultra wide-field mosaic CMOS camera

1.05m Schmidt Telescope

originally designed for observations with photographic plates extremely wide-field of view (~ Ø9° without distortion)

Era of photographic plates

A leading facility in the wide-field obs. astronomy in Japan ~ 8000 photographic plates are going to be archived.

Era of semicondactor/CCD image sensor

A birthplace of the first CCD/mosaic CCD cameras in Japan

A pathfinder to the Hyper Suprime-Cam in Subaru Large survey programs by Kiso Wide Field Camera (KWFC)

Cameras in Kiso Observatory

-1990 Photographic Plate

Gray: Photographic Plate Orange: Single-Detector CCD Camera Green: Mosaic CCD Camera

Next-generation Camera

Concepts:

Surveys for **extremely rare** transient events

Field-of-View --- as large as photographic plates Quick readout --- High survey efficiency

Movie observation --> explore a new parameter space

Tomo-e Gozen

2K×1K CMOS image sensor by **Canon** 84 CMOS sensors are tiled to cover ~20⊡°

An overview of the Tomo-e Gozen camera

Tomo-e Gozen

Specifications

Observatory Kiso Observatory Telescope 1.0-m f/3.1 Schmidt telescope 2160×1200pixchip⁻¹ Sensor format 39'.7×22'.4 × 84 chips Field of view 19µm, 1".189pix⁻¹ Pixel scale Wavelength 350-700nm (peak at 500nm) Filters optical broadband (transparent) Frame rate 2Hz (max, continuous, full frame) Read noise ~ 1.9e⁻ at 2Hz $\sim 0.1 e^{-1} sec^{-1} pix^{-1} at 277 K$ Dark current Well depth ~6,400e⁻ \sim 18.5 mag. in 0.5 sec exposure 5σ lim. mag.

An overview of the Tomo-e Gozen camera

Tomo-e Gozen

~1990 Photographic Plate

Timeline

Current Status

Specifications

of sensors total FOV area readout noise sim. operation sensor alignment GPS sync. partial readout control software data reduction

21 sensors ~ 5 sq-degree ~ 2 e⁻ at 2 Hz confirmed to be confirmed implemented implemented on going on going

First light with 21 sensors is scheduled on Feb. 19, 2018

Data Release Plan

Data release plan is now under discussion.

Possible schedule:

development of the observation management system ~early-2018 two-dimensional FITS files available early-2018~ all sky photometric catalog available mid- or late-2018~ other products available 2019~

People in collaborations will be allowed to acccess the data. VPN accounts will be issuued for the collaborators (under discussion).

KOOLS-IFU & Tomo-e Gozen Quick spectroscopic follow-up observations

Possible Observations

1. All-Sky Transient Survey (c.f. Morokuma-san's talk) monitoring a 10,000 sq-deg sky in a 2 hours, to detect ~18-19 mag. transients about 1,000 typical SNe and 5 SN Shock Breakout detected per year

- 2. High-cadence monitoring to detect fast transients survey of Trans Neptunian Objects; monitoring of active star-forming region survey of disintegrating planets wround WDs; extremely short-timescale transients
- **3.** Follow-up observations to localize transient events localization of gravitational wave EM counterparts, fast radio bursts, and others
- 4. Coordinated observations with other facilities meteor obs. with Kyoto Univ. MU-radar; pulsar obs. with radio telescopes

from Sako-san's presentation in the OISTER meeting in 2016

Possible Observations

Tomo-e Gozen is specialized to **detect** transients. Facilities to **characterize** the detected transients are required.

Topics: GW counterparts

EM localization still required for spectroscopy in LIGO O3.

GW170817 (SSS17a) was identified by a 1-m telescope.

Small but wide-field telescopes have chances to detect counterparts.

Other facilities: LSST, DeCam, Pan-STARRS, ZTF, etc... Quick (within the same night) follow-up observations are required. How many candidates will we have?

Topics: GW counterparts

Error circle of GW170817: ~2×15 deg ≒ 12 Tomo-e Gozen decision-making timescale ~ 1 hour (5 min x 12 position)

Topics: Yound Stellar Objects

High cadence observation → physics of the innermost region of accretion disks

AA Tau-type stars: accretion along with magnetic fields

Topics: Yound Stellar Objects

Monitoring observations by Corot (Mcginnis et al., 2015)

Typical timescale: **hours** – **days** Typical variation: **0.1** – **1 mag.**

Blue: periodic (stellar spots) Green: quasi-periodic (AA Tau-like) Red: ramdom (non-static accretion)

c.f. the presentation by T. Mori in Kiso Schmidt Symposium

Topics: Yound Stellar Objects

AA Tau-type stars: 0.1–1 mag. in a timescale of few hours—days Monitoring observations by Corot (Mcginnis et al., 2015)

Simultaneous spectroscopic observations → accretion geometry can be investigated by "veiling" effect

Spectroscopic follow-up of accretion burst objects

c.f. the presentation by T. Mori in Kiso Schmidt Symposium

Topics: Debris around WDs

dirty WDs (~50%): accretion of debris

WD 1145+017

transits detected by Kepler, follow-up by ground-based telescopes asteroid at the distance of tidal disruption

Figure 1. TNT/ULTRASPEC high-speed (5 s) photometry of WD 1145+017, obtained over 3.9 hr on 2015 December 11, illustrating the varied and complex nature of the multiple transit events. Many of the broader transits display sub-structure that appears to be the superposition of several shorter events, e.g., #4 and b5. Transits labeled in color can be tracked in phase across multiple nights (see Figure 2). Simple transit models are overlaid in red, see Section 4 for details.

Topics: Debris around WDs

Cataloged WD ~ 13,000 obj. (McCook & Sion, ApJS, 1999) note that these WD are heavily biased in SDSS regions Gaia will provide a more complete catalog of Galactic WDs more than 100 WD should be monitored 13,000 × (20 / 41,000) ~ 6.3 WDs in Tomo-e's FOV all-sky

Topics: Outbursts in Solar System

Outbursts of comets and asteroids most plausible way to investigate primordial materials in Solar System

→ as frequent as SN shock breakouts

c.f. the presentation by M. Ishiguro in KOOLS-Tomoe WS

Topics: Near-Earth Asteroids+α

2Hz observations ⇒ efficient in detecting fast moving objects no trail loss, high position accuracy, self follow-up observation

c.f. the presentation by Y. Kojima in Kiso Schmidt Symposium

Topics: Near-Earth Asteroids+α

Flash spectroscopy of Near-Earth Asteroids determine the asteroid types of the near-earth asteroids moving & large positional uncertainty ⇒ a potential advantage in IFU

Don't miss the next 11/ Oumuamua the first interstellar asteroid detected in 2017 extremely rare chances to investigate small bodies outside of Solar System

c.f. the presentation by Y. Kojima in Kiso Schmidt Symposium

Summary

1. Tomo-e Gozen's first-light in **2018**

Commissioning observation with 21 image sensors in Feb. 2018 The second module will be ready in late 2018.

Sensor format	2160×1200pixchip ⁻¹	Field of view	39'.7×22'.4 × 84 chips
Pixel scale	19µm, 1″.189pix ⁻¹	Wavelength	350–700nm (peak at 500nm)
Frame rate	2Hz (max, continuous, full frame)	Filters	optical broadband (transparent)
Read noise	~ 1.9e⁻ at 2Hz	5σ lim. mag.	~ 18.5 mag. in 0.5 sec exposure

2. ToO or Coordinated observations with KOOLS-IFU Tomo-e Gozen needs KOOLS-IFU to characterize transient objects. ToO follow-up: GW counterparts, YSOs, Near-Earth Asteroids, Outbursts Coordinated observation: debris around WDs

