

Technologies for a future giant optical telescope

Martin Cullum Head of the ESO Technology Division Garching, Germany

Opportunities for international research cooperation and commercialisation of functional materials Helsinki, 22 January 2008

Technologies for a future giant optical telescope

Talk summary

- What is ESO?
- Background to the European Extremely Large Telescope (E-ELT)
- Present activities
- Time scales
- Technology examples
- Work of ESO and many collaborating institutions and industrial partners

ESO is ...

- Inter-governmental Organisation
- Estalished by International Convention in 1962

ESO's mission...

 Provide astronomers in member states (~ 3000) with state-of-the-art observational facilities Further and organise collaboration with astronomy and astrophysics in Europe

Budget and Staff ...

- Budget: ~200 Euro
 Staff: 650
 (2006)
- Technologies for a future giant optical telescope, Helsinki, 22 January 2008

ESO Sites

Chajnantor

Garching bei Münche

Paranal La Silla Santiago

Earth at Night More information available at: http://antwrp.gsfc.nasa.gov/apod/ap001127.html Astronomy Picture of the Day 2000 November 27 http://antwrp.gsfc.nasa.gov/apod/astropix.html

E-ELT Background

- OWL 100m Design Study (1997 2005)
 - Why have telescopes only increased by a factor of two in diameter every 50 years?
 - What are the physical limits?
 - > Can we break the cost scaling laws (D^2.6)?
 - Can a 100m optical telescope be built for 1000 M€ ?
- Swedish 50m telescope design study
- OWL Concept review (November 2005)
 - No show stoppers but high risk of not being completed on time on in budget
 - Recommended to explore the possibility of building a 30 – 60 m telescope at a cost of 650-750 M€ in a competitive time scale
 - 5 Working groups set up (Science, Instruments, Site, Design and Adaptive Optics)
- E-ELT baseline design accepted at the Marseille meeting (November 2006)
 - 42m diameter, 5-mirror design
 - Approval to start Phase B Technologies for a future giant optical telescope, Helsinki, 22 January 2008

Present activities (1)

FP6 Activities

- Technology oriented, design independent
- > 30 partners, 11 countries, 30.5 M€ (8.4 M€ from FP6)
- ELT Design Study (EC Research Infrastructures Action)
 - Mechanical studies
 - Enclosure concepts and wind studies
 - Adaptive optics
 - Integrated modelling
 - Wavefront control
 - Advanced adaptive optics
 - Optical fabrication
 - Instrumentation (point designs)
 - Site characterisation
- Other FP6 activities (JRA)
 - Second generation Adaptive Optics
 - Fast Optical Detectors and Fast readout high performance optical detectors
 - Smart focal planes and VPG development

ESO Funded Activities (ESO and collaborating institutions)

E-ELT Phase B

- Requirements definition, system engineering
- Mechanical design (internal and industrial studies)
- Industrial study contracts
- Optical design, adaptive relay unit industrial studies (M4 & M5)
- optical manufacture studies
- VLT Activities
 - VLT Adaptive Optics Facility (inc. DSM and 4-laser guide star system)
 - Second generation VLT Instruments, inc. SPHERE (exo-planet finder with extreme AO), MUSE/GALACSI & HAWK-I/GRAAL (with ground layer AO)
- Other In-house developments and studies
 - Electronics standards, time standards, product testing (incl. cryo testing), control architectures, technology demonstrators, ...
- Other industrial and academic studies and developments
 - Fibre lasers, Laser components, PC hollow core fibres, …

E-ELT Schedule

Time scales

- E-ELT Phase-B
 - Fully funded (~ 50 M€)
 - Jan 2006 December 2010
 - In 2010:
 - All FP6/7 studies completed
 - Design concept agreed
 - Site agreed
 - All important technical specifications defined
- Construction phase: 2011 2018
 - Subject to funding being available
 - First science 2015 2016
 - Timescale compatible with JWST

- Enclosure concept studies
- Mirror Actuators
- Mirror Metrology
- Wind analysis & control
- Mirror Phasing (APE)
- Friction and other drive systems
- Optical fabrication
- Adaptive optics
- Fast optical detectors
- Fibre lasers
- Instrumentation developments & concepts

Enclosure concept studies

- 4 concepts evaluated (Sliding enclosure, eye-lid, e-BAT and box-type
- Evaluated for cost, reliability, maintainability, protection from wind and stray light, safety, etc.

Enclosure concept studies

- 4 concepts evaluated (Sliding enclosure, eye-lid, e-BAT and box-type
- Evaluated for cost, reliability, maintainability, protection from wind and stray light, safety, etc.
- Turbulence evaluated with Large eddies simulator, CFD modelling and wind tunnel (ITER and Boundary Layer WT)

Mirror Actuators

- E-ELT M1 position actuators designed and prototyped
- Dual-stage (voice-coil and stepper)
- Max stroke of 150mm for mirror segment removal
- Closed loop position accuracy of 5nm with variable load up to 1700 N
- Production of 18 units for WEB

Technologies for a future giant optical telescope, Helsinki, 22 January 2008

FP6 EDS

- M1 mirror metrology
 - Capacitive and inductive sensors compared
 - Evaluation of stability, sensitivity to mirror misalignment and deformation of segments, cross talk, noise etc.)
 - High stability test bench has been developed
 - Hardware units produced for integration in the WEB project

Wind analysis and control

Jodrell Bank wind measurements

- 200 wind pressure sensors mounted on surface
- 40 mounted closer together to measure short range correlation functions

VST enclosure measurements

- WEB (Wind Evaluation Breadboard)
 - Dev. of position control architectures for wind rejection

ESO & FP6 EDS

Technologies for a future giant optical telescope, Helsinki, 22 January 2008

Active Phasing Experiment (APE)

- Designed to test 4 different phasing technologies for segmented mirrors (DISPSI, ZEUS, PYPS & SHAPS)
- A 61-element prototype constructed with internal metrology
- To be installed and tested on the VLT in 2008

Mechanical Design Studies

- OWL 100m concept design
- E-ELT 42m mechanical design
 - ESO Baseline design
 - Two industrial studies
- Mechanical technology studies (FP6)
 - Composite materials
 - Structural ropes
 - Magnetic drives
 - Magnetic levitation
 - Friction Drives >>

Friction Characterisation Breadboard

- Concept evaluation for friction driven bogies
- 7m Diameter test rig, including wind disturbance and track misalignment generators
- Evaluation of stiffness, stick slip, tracking, pointing, sensitivity to track misalignments, sensitivity to wind disturbances and RAMS aspects
- Prototype not yet as stiff as required

Optical Fabrication Studies – M1

- Manufacture and testing of 1m-class SiC flat segments
- Qualification of SiC as an affordable alternative to Glass
- Investigation of over-coating technologies (CVI, ICVI, metallic, Si, ...
- Investigation of polishing techniques (edge control)
- Production of flat segments for WEB
- ESO contract for the production of 7 figured segments in Zerodur, Astrosital, ULE + another material

ESO & FP6 EDS

Optical Fabrication studies M2 – M5

- Several industrial feasibility studies completed
- M2 6m convex (current technology)
- M3-M5 Adaptive Optics Relay Unit
 - ≻ M3 4.2m
 - M4 2.5m deformable
 - M5 2.7m tip-tilt
- VLT: 1.2 deformable M2 in manufacture

Non-AO

AO

Picture from SINFONI on VLT: 0.75 arcsec seeing, binary separation 0.12 arcsec

Adaptive Optics

E-ELT AO Concept developments

- Single Layer AO (SLAO)
- Ground Layer AO (GLAO)
- Laser Tomography AO (LTAO)
- Multi- Conjugate AO (MCAO)
- Extreme AO (XAO)

Novel AO Concepts

- Dynamic refocus of a pulsed LGS (comparison of techniques, scaling to an ELT)
- Centroid algorithms and static optical compensation (LGS Elongation)
- Differential focal and spot anisoplanatism (Cone Effect)
- Pseudo Infinite Guide Stars (PIGS)

Large, high density deformable mirrors

- 1371 Actuator DM for SPHERE
- Deformable large thin shells
- 1.2m Deformable mirror upgrade for M2 of VLT UT4 (Part of the VLT AO Facility) 1170 actuators, 29mm pitch, 80 Hz

VLT Deformable Secondary Mirror

Overview of AO possible performance

	Category #1	Category #2	Category #3
Corrected FoV (diameter)	Small (Isopl. Angle, i.e. 20" with 0.8 of max Strehl)	Medium (1')	Large (5')
Performance metric	70% Strehl (K) 33% Strehl (J)	50% Strehl (K) 11% Strehl (J)	16%(K), 5% (J) EE in 50mas (4 x seeing)
Obs. λ range	R–N	J–N	J–N
PSF uniformity	low	high	medium
Potential systems	SCAO (1DM, 75% Strehl*, NGS, low sky coverage)	MCAO (2 DMs, several LGS)	GLAO (1 DM, <mark>several LGS</mark> , special LTAO mode)
	LTAO (1DM, 60% Strehl, several LGSs high 'sky coverage')	MCAO (3 DMs, several LGS), larger FoV	MOAO (1-2 DM, several LGS , restricted to 'islands', better Ensquared Energy)
	XAO (2DM, bright NGS)		

- Sky coverage always 100% (=> LGS required), not fulfilled by SCAO
- Wavelength range R-N (deviations above due to performance)
- All numbers in 0.5" seeing and with 42-m telescope

Laser Guide Stars

Current VLT LFSF

- 10 Watt CW 589 nm
- 1.1 arcsecond artificial star
- Fibre optical feed
- In regular operation since spring 2007
- Raman Fibre Lasers
 - 1178nm frequency doubled
 - 5W currently achieved (7W specified), combined to achieve 20W power (15W launched)
 - Will be used in the VLT 4 LGSF
- E-ELT pulsed lasers
 - Planned for E-ELT
 - Needed to counter large ELT cone effect
 - On-going but delayed due to definition of system requirements

Optical Fibres

Photonic Crystal fibres

- Current LGSF uses photonic crystal fibres produced by Crystal Fiber (DK) and Mitsubishi (J)
- Development contract to give acceptable transmission at 598nm

Hollow core PC Fibres

- Potentially allow greater laser power transmission
- Needed for pulsed lasers
- Development contract not successful due to pulling problems.

Fast Detectors

- FP6 fast WFS project
 - 240x240 pixels
 - Based on E2V CCD220
 - Incorporated in OCAM test camera on GTC
 - To be used at ESO for SPHERE planet finder (2nd generation VLT instrument)
- Advanced HD WFS Detector
 - 4 concept studies carried out for a 1600x1600 pixel detector
 - RON <3e- , 700Hz frame rate</p>
 - 3 different approaches proposed
 - Study completed end 2007
 - 2 technology validation studies to start 2008

Technologies for a future giant optical telescope, Helsinki, 22 January 2008

Photo-dioc

The CCD 220 Design

Instrumentation

- ESO/FP6 AO technology prototypes for incorporation into VLT instruments
 - MAD (Multi (dual) conjugate AO Demonstrator (In operation since mid-2007)
 - MUSE (GALACSI)
 - HAWK-I (GRAAL)
 - SPHERE (Planet finder instrument with eXtreme AO)
- FP6 concept studies for E-ELT instruments

SPHERE

Examples of E-ELT instrument concept studies

SCELT

HiSPEC IR

Figure B.2 GASP polarimeter, Zemax ray trace [6], courtery of P. Collins

Planet Finder - EPICS

Many other activities ...

Smart focal planes

Subsystem design

Site testing