X線天文衛星XRISMによる激変星のサイエンス

石田 学 宇宙科学研究所(JAXA)

一目次一

♀X線天文衛星XRISM

- ፼衛星の諸元
- 観測機器
 - Resolve (X線カロリメータ)
 - Xtend (X線CCDカメラ)
- ●激変星からのX線放射
- - 6.4keV輝線による物理
 ◎
 - ●重力ポテンシャルを利用した白色矮星質量の測定
 - 境界層光度問題
 - ◎ プラズマの密度診断
 - ◎ 矮新星爆発時のコロナのgeometry

一目次一

♀X線天文衛星XRISM

- ፼衛星の諸元
- 観測機器
 - Resolve (X線カロリメータ)
 - Xtend (X線CCDカメラ)
- 激変星からのX線放射
- - - 重力ポテンシャルを利用した白色矮星質量の測定
 - 境界層光度問題
 - ◎ プラズマの密度診断
 - ◎ 矮新星爆発時のコロナのgeometry

X線天文衛星 XRISM (1)

•*XRISM* = X-Ray Imaging & Spectroscopy Mission

- X線分光撮像衛星
- ●2022年度内打ち上げ予定

Launch site	Tanegashima Space Center		
Launch vehicle	JAXA HII-A rocket		
Orbit altitude	550±50 km		
Orbit type	Approximately circular orbit		
Orbit inclination	31 degree		
Dimension	7.9 m x 9.2 m x 3.1 m		
Mass	2.3 metric ton		
Mission life	3 years + cryogen free operation		

X線天文衛星 XRISM (2)

X-ray Mirror Assembly (XMA)

Xtend-Soft X-ray Imager

Resolve-Soft X-ray Spectrometer

Resolve

- ●X線マイクロカロリメータ
 - ●入射X線を熱に変換して温度上昇を検出
 - ●断熱消磁冷凍機+He冷媒+機械式冷凍機を用いて検出器を~50mKまで冷却
 - ●無冷媒運転可能
 - エネルギー分解能: 4~5 eV@6 keV (E/∆E ≥ 1000)
 - ●エネルギー帯域: 0.4-20 keV (31-0.62Å)

•1 keV = 12.4 Å = 1.24 nm

●視野

●検出器サイズ5.0 mm×5.0 mm = 3.0分角×3.0分角

2022年7月28日 京都大学吉田キャンパス

激変星研究会2022 in 京都

- 6 -

Xtend

●X線CCDカメラ

- ●エネルギー帯域: 0.2-15 keV(62-0.83Å)
- ●エネルギー分解能: 250 eV@6 keV
- ●広い視野
 - ●検出器サイズ63 mm×63 mm (ギャップ1 mm)
 - = 38.7分角×38.7分角
 - •Resolveへの視野外からの漏れ込み推定
 - ●新天体発見・Transient天体の検出

Chandra, XMM-Newton & XRISM

• Chandra (1999~) HEG/MEG、XMM-Newton (2000~) RGSと比べてResolve は

- ●特に高エネルギー側で大きな有効面積
- $E \ge 2$ keVで高いエネルギー分解能
 - ●高エネルギー側の特性X線、Si, S, 特に Feの特性X線に advantageあり。
- 非分散型分光計
 - ●広がった天体の精密分光ができる唯一の分光器(ただし狭視野)

激変星研究会2022 in 京都

一目次一

S X線天文衛星XRISM

- ◎衛星の諸元
- ◎ 観測機器
 - Resolve (X線カロリメータ)
 - Xtend (X線CCDカメラ)
- ●激変星からのX線放射
- - ◎ 6.4keV輝線による物理
 - 重力ポテンシャルを利用した白色矮星質量の測定
 - 境界層光度問題
 - ◎ プラズマの密度診断
 - ◎ 矮新星爆発時のコロナのgeometry

硬X線波長帯での強磁場激変星

- ●磁極への降着
- ●定在衝撃波によるプラズマ加熱
 M ≈ 100
- ●光学的に薄い高温プラズマの形成 ●衝撃波の温度

$$kT_{\rm S} = \frac{3}{16} \mu m_{\rm H} v_{\rm ff}^2 = \frac{3}{8} \frac{GM_{\rm wd}}{R_{\rm wd}} \mu m_{\rm H}$$
$$= 22 \left(\frac{M_{\rm wd}}{0.6M_{\odot}}\right)^{4/3} [\rm keV]$$

•冷却流

• Cooling (multi-temperature) plasma

激変星研究会2022 in 京都

硬X線波長帯での矮新星

観測されたスペクトル

激変星研究会2022 in 京都

-13-

一目次一

S X線天文衛星XRISM

- ◎衛星の諸元
- ◎ 観測機器
 - Resolve (X線カロリメータ)
 - Xtend (X線CCDカメラ)
- 激変星からのX線放射
- - 6.4keV輝線による物理
 ◎
 - ●重力ポテンシャルを利用した白色矮星質量の測定
 - 境界層光度問題
 - プラズマの密度診断
 - ◎ 矮新星爆発時のコロナのgeometry

6.4 keV輝線による白色矮星質量の測定

- ●幅の狭い6.4 keV輝線は白色矮星表 面から放射されている。
- ●一般相対論の重力redshiftを利用

$$E_{\rm obs} = E_{\rm lab} \sqrt{1 - \frac{2GM_{\rm wd}}{c^2 R_{\rm wd}}}$$

- ●白色矮星質量
 - ●システムの基本パラメタ
 - Δ*E* = 5 eV程度だが中心エネルギーの
 決定精度はその数倍は容易
 - ●蝕連星以外にも適用可能
 - •SS Cyg
 - • M_{wd} =1.19±0.02 M_{\odot} (Friend+90)
 - • $M_{\rm wd}$ =0.81±0.19 M_{\odot} (Bitner+83)
 - 重い白色矮星はIa型超新星の有力候補 天体
 - ●XRISMではPV Phaseで T CrBを観測予定

境界層光度問題

-16-

●*L*_{bl} = 2×10³³ erg s⁻¹ (スペクトルから *kT* > 20 eV)

 $\rightarrow L_{\rm bl}/L_{\rm disc} < 0.07$

- • $L_{\text{disc}} = 3 \times 10^{34} \text{ erg s}^{-1}(\text{Optical-far UV})$
- 白色矮星の自転が無視できる場合、ビリアル定
 理からLol = Ldisc。
- •Disc Instability model (Last 2001)
- ●高速回転するaccretion belt
 - Huang+96, Sion+96, Cheng+97, Szcody+98…
- 6.4 keV輝線のエネルギー幅から白色矮 星の自転速度ωを測定できる。
 - *L*_{bl} = *L*_{disc} [1– (ω/ω_K)²], ただしω_Kは白色
 矮星表面でのbreak-up角速度

- ●He-like tripletによる密度診 断
 - 1s2s (³S₁)は寿命が長いため、 プラズマ密度が臨界値を超え ると放射脱励起で(1s)²(¹S₀)に 落ちる前にさらなる電子衝突 で1s2p(³P_{2,1,0})に励起される。
 z(禁制線)の強度が弱まり、そ の分x+y(異重項間遷移線)の強

度が上がる。

AE Aquarii (1)

Itoh+06

AE Aquarii (2)

Intermediate Polar

• $P_{\rm orb} = 9.88 \ \rm hr$

• $P_{\rm spin} = 33 \, {\rm sec}$

●Break-up speedに近い回転速度

• kT = 4 keV

●典型的な強磁場激変星よりも一桁低い温度
●プロペラ効果の有力候補天体

●観測結果

- $EM = ne^2 V \approx 1 \times 10^{53} \text{ cm}^{-3}$
- $n_{\rm e} \approx 1 \times 10^{11} \,\mathrm{cm}^{-3}$
 - $\rightarrow \ell_{\rm p} \approx (EM/n{\rm e}^2)^{1/3}$

 $= (2-3) \times 10^{10} \,\mathrm{cm} \gg R_{\mathrm{wd}}$

- ●白色矮星まで落ちていない。
 - XRISMで軌道周期に連動したプラズマ輝線のDopplerが見えれば解決。

Wynn & King (1997)

強磁場激変星Post-shock regionの密度診断

• The intermediate Polar V1223 Sgr

• $M_{wd} = 0.79 M_{\odot}$ (Yuasa+08)

●質量降着率 = 8.4×10¹⁶ g s⁻¹ (Hayashi+11)

●密度がわかると放射領域の形状が解ける。

Result	f		
	0.0002	0.001	0.005
$h_{\rm s} {\rm cm}$	2.52×10^{5}	1.25×10^6	6.14×10^{6}
$kT_{\rm s}$ keV	35.7	35.7	35.4
$ ho_{ m s}~{ m cm}^{-3}$	5.42×10^{17}	1.08×10^{17}	2.18×10^{16}
$v_{\rm s} \ {\rm cm} \ {\rm s}^{-1}$	1.36×10^{8}	1.36×10^{8}	1.36×10^{8}

 $h_{\rm s}$, $kT_{\rm s}$, $\rho_{\rm s}$, and $v_{\rm s}$ are shock height measured from the WD surface, plasma temperature, density, and falling velocity directly below the shock.

矮新星爆発時のCoronaのgeometry (1)

硬X線はdisc coronaから放射されていると考えられる。

矮新星爆発時のCoronaのgeometry (2)

- コロナの存在する領域
 - 「すざく」のスペクトル解 析からR < 1.2 R_{wd}
 (Takeo+21b)
- ●XRISM Resolveの観測
 - コロナの存在する最内縁の
 半径に迫ることができると
 期待。

— まとめ —

- - ፼衛星の諸元
 - 観測機器
 - Resolve (X線カロリメータ)
 - Xtend (X線CCDカメラ)
- ●激変星からのX線放射
 - 最高温度 >10 keVのcooling (multi-temperature) plasmaからの放射
- - 6.4keV輝線による物理
 - ●重力ポテンシャルの測定による白色矮星質量の測定
 - 境界層光度問題
 - 6.4 keV輝線のエネルギー幅から白色矮星の自転速度を測ることで解決 ♀ プラズマの密度診断
 - 強磁場激変星のpost-shock accretion columnの幾何学の理解
 - ◎ 矮新星爆発時のコロナのgeometry
 - コロナが立っている最内縁の半径を推定できる。