共同利用観測装置の計画. II

泉浦秀行 2014-05-22

前回(2013年3月12日)

共同利用観測装置を考えるにあたっての観点

- 1. 3.8m望遠鏡の機能的特徴を活かす
- 2. 3.8m望遠鏡の地理的特徴を活かす
- 3. 自然(環境)条件を活かす(合わせる)
- 4. 188cm望遠鏡共同利用との接続性を持たす
- 5. 汎用性を持たす
- 6. 先進性を持たす
- 7. これまでの経験を活かす
- 8. サイエンスターゲットを設定する

前回(2013年3月12日)のまとめ

- 共同利用観測装置の第一回試案
 - 紫外&可視高分散分光器
 - 近赤外線高分散分光器
 - 可視&近赤外低分散分光器

前回(2013年3月12日)以降の動き

- 共同利用観測装置の第一回試案に対し
 - 紫外&可視高分散分光器 →資金獲得努力あり
 - 近赤外線高分散分光器 →小谷氏提案
 - 可視&近赤外低分散分光器
 - →岩室氏提案、松林·太田氏提案

前回(2013年3月12日)

共同利用観測装置を考えるにあたっての観点

- 1. 3.8m望遠鏡の機能的特徴を活かす
- 2. 3.8m望遠鏡の地理的特徴を活かす
- 3. 自然(環境)条件を活かす(合わせる)
- 4. 188cm望遠鏡共同利用との接続性を持たす
- 5. 汎用性を持たす
- 6. 先進性を持たす
- 7. これまでの経験を活かす
- 8. サイエンスターゲットを設定する

今回(2014年5月22日)

- 共同利用装置ではあるがサイエンスターゲットを検討してみる
- 関係しそうな最近の世界の動向、研究情勢 の変化を概観してみる

2010年代後半~2020年代の世界の光赤外天文学観測施設の概観

望遠鏡	クラス、サイト、波長	目的	特徴
TMT, GMT, ELT	30m class Ground Opt/NIR	汎用 可視、赤外	大集光力 超高分解能
LSST, PanSTARS	4-8m class Ground Opt	撮像サーベイ 変動天体 高感度	高頻度観測
WFIRST EUCLID WISH	2m class Space Opt/NIR	撮像サーベイ 高感度 高分解能	
JWST SPICA	3-6m class Space NIR-FIR	汎用 赤外	
GAIA	Special purpose Space	視差、測光 固有運動	視線速度
TESS PLATO	Special Space	系外惑星 トランジット	
Subaru, Gemini, Keckl,II, GTC, VLT, LBT, HET, SALT, Magellan, TAO	8m class Ground Op/NIR	汎用 可視、近赤外	HSC測光 PSF分光
VISTA, VST UKIRT, CFHT, KPNO, CTIO, WHT, AAT, ESO 3.6m & NTT, 3.8m	4m class Ground Opt/NIR	撮像サーベイ 可視、近赤外 過去、現8mの役割	
APOGEE (SDSS) LAMOST HERMES (AAT)	2-4m class Ground Opt/NIR	分光サーベイ 可視 低中分散	視線速度
OAO	2m class Ground		

Existing Legacies

- DSS
- SDSS
- 2MASS, UKIDS
- IRAS, Spitzer, AKARI, WISE

GAIAの打ち上げ成功

- 2013年12月にGAIAの打ち上げが成功した。
- 3年以内に10億天体の精密な位置情報、固有運動、年周 視差 →銀河系内天文学はGAIAの時代を迎える。
- あらゆる点状光源の高精度接線速度がもたらされる。
- それに対応した視線速度情報が重要になる。
- 分光モニターは時間がかかるので、多くの望遠鏡で取り組んでも資源は枯渇しない(だろう)。
- 分光長期モニター観測がニッチ?
- 高分散分光、特に近赤外線高分散分光モニターが目玉か?
 - 系外惑星研究?
 - 低温度星研究?(キットピークFTSである程度やられた)
 - 爆発天体研究?
 - M型矮星の高分散分光モニター

GAIAと視線速度精密測定

- GAIAは、ざっと言って、10-100pc内の恒星の天球上の位置変化を10マイクロarcsecで測定する。
- 太陽型星では5~10等級くらいに相当する(岡山で十分観 測可能)。
- Transverse速度1m/sの場合に見られる位置変化(マイクロ arcsec)は次のレベル。

d(pc)	per yr	per 5yr	
10	20	100	
100	2	10	

- 線形的でない星の位置変化が見つかった場合、測定精度 1m/s程度以上の視線速度の測定が有効になってくる。
- 例えば、惑星か、恒星表面現象か、別の原因か切り分け。
- CORALIE(1.2m)、HARPS(3.6m)では検討され始めている。

重要事項

- 優れたオートガイダーの設置が必須
 - 分光観測が中心になると予想される
 - 分光観測の能率を左右するのは捕捉と追尾
 - 視野が広い
 - 感度が高い
 - ダイナミックレンジが広い
 - 安定性・信頼度が高い
 - 故障しない
- 焦点面の取り合いに大きな影響を及ぼす

人材と資金

- 共同利用観測装置の第一回試案
 - 紫外&可視高分散分光器 →資金獲得努力あった
 - 近赤外線高分散分光器 →小谷氏提案
 - 一可視&近赤外低分散分光器 →岩室氏、松林・太田 氏提案
- 少ないが人材の見通しはある
- 人材が先か(人が集まることで資金獲得できる)、 資金が先か(資金を獲得することで人材を集められる)?

まとめ

共同利用観測装置(第二回試案)

- 一年前の試案と整合性のある装置提案が自発的に この一年の間に立ち並ぶようになった
- ●紫外&可視高分散分光器 (資金獲得努力あり)
- ●近赤外線高分散分光器 (小谷氏)
- ●可視&近赤外低分散分光器 (岩室氏、松林·太田氏)
- 共同利用装置計画と、これまでの装置提案の流れとを、うまくまとめて大きな流れとしていくことが、次の大きなステップ。