Joint Subaru/Gemini Science Conference @Kyoto U., May 18-21, 2009

Subaru/COMICS view of star and planet formation

Yoshiko K. Okamoto (Ibaraki U) Collaborators: H. Kataza (ISAS/JAXA), M. Honda (Kanagawa Univ.), H. Fujiwara, I. Sakon, T. Onaka (UT), T. Yamashita, T. Fujiyoshi (NAOJ), T. Miyata, S. Sako (IoA, UT)

Outline

- Circumstellar disks related to star and planet formation
 - Planet formation in circumstellar disks around low to intermediate mass stars
 - Grain evolution in the disks
 - Structure and dust distribution in the disks
 - Appearance of early planetary systems
 - Disks related to massive star formation
- Summary and Future Prospects

1. Planet formation in circumstellar disks around low to intermediate mass stars

Dust processes in the disks

Dust in protoplanetary disks – change from the ISM dust

Group of small bodies and replenished dust cloud

 Dust dynamics dominated by radiation pressure, Poynting-Robertson drag, and resonance with planets

Observing disk dust w Subaru/COMICS

Powerful to study dust processes

- MIR imaging and spectroscopy w a slit viewer @10/20µm regions
- Diffraction limited resolution (0.3"@10µm)
 - Observation/Reduction techniques are developed
 - Resolving bright circumstellar disks
- Probe inner disks corresponding to planet forming region (<~50AU)
- Many dust features in the MIR
 Species, composition, temperature, size, crystallinity, and environment of grains
- High sensitivity
- Many disk observations
 grain evolution, disk structure, dust distribution in the disks

1.1 Grain evolution in the disks

Silicate features sensitively depend on

- Grain size
- Crystallization ($T > \sim 800 K$)
- Composition
- Observing the silicate features in the disks is probing the grain evolution in the disks

Evolution of silicate grains in TTS disks (Honda+2006)

- R~250 spectroscopy in the 10µm region of disks around 30 young low-mass stars
 - Grain growth
 - Crystallization related to high T processes

Drawn by using data observed with COMICS

Silicate Evolution

Correlation

- between the feature strength and the feature shape
- between the feature strength and the fraction of the big grains

Relation between the dust and the stellar or disk properties

Silicate dust properties

■ Feature strength or crystalline fraction

Stellar or disk parameters

• $L(H\alpha)$ as an indicator of accretion activity

 opacity power-law index β in the radio which probes the grain growth in cold regions

 stellar age from HR diagram

• M_{disk} from the radio

Only correlation we found is between the feature strength and the L(Hα)

Correlation between the feature strength and $L(H\alpha)$

- The depletion of small sub-µm grains occurs as accretion activity ceases
 - Turbulence in the disks stirs the grains up to the surface layer and might make the small grains detectable during the active accretion
- **No correlation between the feature strength and \beta**
 - The timescale of the dust evolution differs between warm and cold regions
 - Rapid grain growth to mm-sizes
 - Rapid sedimentation of the grown dust grains to the midplane occurs
 - \rightarrow completing β evolution at an early TTS phase
- No correlation between the crystallinity and the stellar/disk evolution
 - 5-20% crystalline grains are regularly present in PPDs from young to old TTSs
 - → Crystallization of this level has completed at a very early stage of or before the TTS phase (probably at protostar and/or FU Ori stages)
 - Consistent with model calculation including radial material transport, which expects that the crystallinity comes in equillibrium within $\sim 10^{6}$ yrs

1.2 Structure and dust distribution of the circumstellar disks

- Size of warm region is closely related to the disk geometry
 - Larger for the disks well irradiated by the stellar radiation to the outer regions
- High resol. imaging survey of disks in the 10 and 20µm-bands for nearby HAEBEs (Okamoto+2005; Honda+2005)
 - Direct test for the thermal structure estimated from SED
 - ~300K~150K region w 0.3-0.6" PSF
- Group I disks tend to be extended
 - In size or in the fraction of extended samples
 - roughly consistent with the prediction by SEDs but there is variety

24.5µm image of HD142527 (Fujiwara+2006) Color: COMICS 24.5µm

- COMICS image resolved the cool outer disk of this group I HAE Gap between the inner and the outer disks • $r \sim 0.85$ " (170AU) for outer component • Larger τ for E (0.057) than W (0.018) Color temperature from $18.8/24.5\mu m$ Almost the same (82-85K) for E and W components Inverse flux distribution for MIR against NIR suggests a disk with a gap inclined
 - MIR thermal emission
 - E rim exposed to us, while W rim obscured
 - NIR scattered light
 - Forward-scattered light in the western side

High spatial resolution spectroscopy of the extended debris disk β Pic

(Okamoto+2004)

Study of the silicate dust distribution in planet forming region (<50AU)
 Obtained spectra fitted with 0.1µm amorphous olivine (green) +2µm amorphous olivine (red) +Crystalline forsterite (blue) +Power-law continuum (cyan) =Total (magenta)

Distribution of sub-µm grains shows location of dust replenishment

- Small amorphous silicate grains have distribution peaks at 6, 16, & 30AU
- Grains are replenished there.
 - Since such small grains are blown-out by radiation pressure quickly (~10yr).
 - Larger grains replenished there infall toward the star due to PR drag.
 - Near the star, grains are crystallized by heating due to stellar radiation.

 $10 \mu \text{m}$ brightness of each silicate feature

Planetesimal belts replenishing grains

Ring-like planetesimal distribution

- Grain replenishment: 10¹⁵⁻¹⁶kg/yr
 - 10⁵⁻⁶ times larger than that of zodiacal dust
- The belts seem to be in resonance:
 - We predicted that they are in resonant with planets
- Confirming simulations (Freistetter+2007)
 - 2-5M_J planet at 12AU, e<~0.1
 Warp, 6&16AU belts, FEBs
 - Two more at 25 & 45 AU likely
 - Planet masses are estimated
- Lagrange+2008
 - Direct detection of 8MJ planet at ~8AU?

17

2. Formation of Massive Stars

Disks and massive star formation (≥8M_o)

Massive star formation is much less understood than the formation of lower mass stars

- For very massive stars (a few tens M_o), radiation pressure of the forming star may stop the accretion onto the forming star.
- Rapid evolution and formation in cluster
 - difficult to see the forming massive stars very clearly and separately
- Accretion through disks or merging of lower-mass stars?
 - \blacksquare There are about a dozen of disk candidates around massive YSOs up to $M_{\ast}{\sim}10{\text -}20M_{\odot}$ stars
 - Interferometric observations at mm and sub-mm wavelengths
 - Rotating gas fragments with velocity gradient perpendicular to the outflow
 - Little clear disk image in the infrared regions so far
 - In contrast with the situation for the lower-mass stars

Discovery of a disk around HD200775 (Okamoto+ submitted) HD200775 ■ $d=430_{+160}$ pc (Hipparcos) • Herbig B3(± 1)e star ■ Based on optical lines (Hernandez+2004) • 5400L_{\odot} (if Rv=3.0) to 15000L_{\odot} (if Rv=5.1) Exciting star of the reflection nebula NGC7023 ■ Located near the center of the E-W extending outflow cavities seen in the CO and FIR Closed binary (Pogodin+2004; Monnier+2006) ■ Semi-major axis 15mas=6.5AU@430pc ■ M1+M2=10.4 M_o, M1/M1+M2=0.825 Binary of two massive stars ?(Alecian+2008) \bullet 10.7 \pm 2.5 M_o + 9.3 \pm 2.1 M_o

N-S extending disk^{A. HD2} emission

- Unresolved peak emission
 + diffuse elliptical emission
 - Likely inclined circumbinary disk
 - Perpendicular to the outflow cavity
- Parallel to the projected major axis of the closed binary orbit
 - 750~1000AU in radius
 - Similar to the radius of disk (candidates) around massive YSOs and lower-mass stars
- → 1st detailed IR disk image around ~10M_☉ star

HD200775 seems to have formed through the disk accretion.

E. HD200775 at 18.8μm

Flared disk geomtetry

Shift

- Centers of the elliptical contours of the diffuse disk emission are shifted from the unresolved peak emission 120 ∘ 8.8µm source $\Delta(r)$ [AU
 - Shift Δ is larger for the fainter contours
 - Characteristic to a flared disk geomtery
 - Similar to the Herbig A0e star $HD97048 \ (2.5 M_{\odot} \text{ Lagage+2006})$
 - Simple model fitting
 - Axisymmetric disk only whose surface emits in the MIR
 - From r_{in} to r_{out}
 - $z(\mathbf{r}) = z_0 (r / r_0)^{\alpha}$
 - Surface brightness

$$= F_0 (r / r_0)^{\beta}$$

- Inclination *i*
- Convolution of the model disk with the observed PSF

A. HD200775 at 8.8um

G. model

Radius r along the major axis r [AU]

Properties of the disk

- Color temperature from $I_{11.7\mu m}/I_{18.8\mu m}$
 - 180-330K
 - >> T_{dust} of black grains
 149K@430AU, 97K@1000AU
 - → effectively heated small grains (~0.1µm radius) in the disk atmosphere

Offset along the minor axis [arcsec]

1000AU

200 250 300 Color temperature Ik

Okamoto+2009

Color T of HD200775

 Vertical thermal structure similar to that modeled for passive disks around lower-mass stars

• τ_v of $10^{-3} - 10^{-5}$ for the diffuse emission

- << the value expected by usual disk models ($\sim z(r)/r \sim 0.1$)
- Surface ripples due to themal waves? (Watanabe & Lin 2008)

Properties of the disk

- Photoevaporation from the disk surface
 - 3.4mm free-free emission by Fuente+2001 is very similar in size and shape to the MIR disk and tail emission
 - Photoevaporation radius
 - Inner radius where the sound speed of ionized gas exceeds the escape speed against stellar gravity
 - $r_g \sim 70 \text{AU}$ for a 10M_{\odot} star
 - Possible ionized gas flow from the disk surface at

 $r > r_g$

E. HD200775

F.18.8um PSF

Hollenbach+1994

Inner disk and dust in the diffuse disk

- The unresolved peak emission
 - Featureless, ~1600K (>1000K w 1σ error) blackbody
 - Circumprimary (or circumsecondary) disk
- Diffuse disk emission
 - Amorphous silicate feature with a peak $\sim 9.2 \mu m$
 - Shorter than the peaks of silicate features of circumstellar disks around young lower-mass stars, ISM extinction, and envelopes around massive YSOs
 - Likely from pyroxene (MgSiO₃) or amorphous silicate with more SiO₂ fraction

Grain properties characteristic to massive stars may be revealed by separating the disk emission with high spatial resolution.

Amorphous pyroxene (MgSiO₃) : 0.1μ m radius (dotted) 1μ m radius (solid) Amorphous Mg_{0.7}SiO_{2.7}: 0.1μ m radius (blue) 1μ m radius (green)

More results by COMICS/MIR

Takahashi+ poster

- Dust emission toward M17 shows characteristic 9µm feature
 - Relation to those observed toward HD200775?
- de Wit+ 2009 (also poster)
 - 24.5µm images of massive YSOs
 - ~1000AU scale density structure revealed by model fitting to the image and SEDs
 - Density profile shallower than larger scale observed by the radio
 - Some sources cannot be explained w spherical density distribution

de Wit+2009, poster

Takahashi+ poster

More results by COMICS/MIR

Okamoto+ 2003

- Diagnostics of the embedded massive YSOs from emissions of their surrounding ionized regions
- See also Crowther+ poster (Development w Gemini)

Fujiwara+ 2009 (also poster)

- Follow-up observations of debris disks with COMICS and Gemini/T-ReCS by AKARI, the Japanese IR satellite
- For HD106797, 10-13µm excess is detected
- Td~190K, dust ring of r~14AU

Summary and future prospects

- Many results from Subaru/COMICS MIR observations to understand the star and planet formation
 - Grain evolution in the PPDs
 - Thermal structure of the disks
 - Grain distribution in the PPDs and DDs
 - Early planetary systems
 - Disks, dust, and density distribution of massive YSOs, etc...
- Future prospects
 - Further study w Subaru/COMICS
 - Detailed dust distribution of resolved disks
 - Search for the embedded massive YSOs and their properties
 - Realizing MIR observations w TMT
 - Improved spatial resolution (0.08") is very powerful to resolve the planet forming regions with 1 to 10AU scale