Young Dusty Starburst Galaxies at z~2

Tohoku University, Astronomical Institute Tomohiro Yoshikawa, MODS team

Cosmic SFR Density

<u>Cosmic History of SFR Density</u>

cosmic SFR density has its peak at $z \sim 2$ and monotonically decays from $z \sim 1$ to the present universe.

What populations do contribute to the star formation at the star-forming epoch of the Universe?

Spectroscopic Observation of Galaxies at z ~ 2

Observation of H α Emission Lines

Data

<u>Star-Forming BzK galaxies</u>

K-selected star-forming galaxy at z^2 (MOIRCS Deep Survey field) with Ks < 23 (AB) S₂₄ > 80 μ Jy: 18 S₂₄ < 80 μ Jy: 21 X-ray galaxies (Alexander et al. 2003) are excluded. Observation Subaru/MOIRCS MOS mode 4 masks (CDFN1-4)

```
exposure time: 160-320 min
HK500 grism + 0.8" slit: R~500
```

💥 serendipitous target of Akiyama et al.

$H\alpha$ Emission Lines

$H\alpha$ Detection Rate

	obs.	Hα	rate
S ₂₄ >80 μ Jy	26	15	58%
$S_{24} < 80 \mu$ Jy	13	8	62%
total	39	23	59%

 $MODS11-0390H\alpha$

5

$H\alpha$ Emission Lines

Redshift Distribution

sBzK galaxies lie at 1.4<z<2.5

The galaxies without emission line detection have smaller SFR? expected detection rate is much higher (>85%), if all samples have similar SFR.

SFR and Stellar Mass

<u>Our Emission Line</u> <u>Galaxies</u>

only a weak correlation between SFR and ${\rm M}_{\bigstar}$

A part of low mass galaxies have higher SFR

<u>Other Studies</u>

Daddi+ 2007 (sBzK, rest-UV)

strong correlation

other studies using ${\rm H}\,\alpha$ emission line also show week (shallower) correlation

Young Dusty Starburst Galaxies

<u>Mass-Weighted Age and</u> <u>Extinction</u>

Large SSFR galaxies are young and dusty galaxies

A part of BM/BX galaxies (Erb et al. 2006) are also young but less attenuated.

mid-infrared selected samples choose the young and dusty galaxies?

 $O: S_{24} > 80 \mu Jy$

Contribution to Cosmic SFR Density

SFR Density Estimated from H α Luminosity

Low-mass young dusty galaxies significantly contribute to the cosmic SFR density

Summary

We observed 39 sBzK galaxies and H α emission lines are detected from 23 of them.

Our emission line galaxies show only a weak correlation between stellar mass and star formation rate, owing to <u>large specific SFR galaxies</u>.

Large specific SFR galaxies are <u>young and dusty starburst</u> galaxies with bright $24 \,\mu$ m flux.

Low-mass young dusty galaxies would significantly contribute to the cosmic SFR density at z ~ 2