Subaru/Gemini conference, Kyoto,

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo 2009-05-21

Mid-infrared Observations of Comets with Subaru Telescope

Takafumi OOTSUBO (ISAS/JAXA, Japan) Jun-ichi WATANABE (NAOJ) Mitsuhiko HONDA (Kanagawa University) Hideyo KAWAKITA (Kyoto Sangyo University) Reiko FURUSHO (NAOJ) Seiji SUGITA (Univ. of Tokyo) Toshihiko KADONO (Osaka Univ.) Takuya YAMASHITA (NAOJ) + COMICS & comet group

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo 2009-05-21

Introduction

o Subaru/Gemini conference, Kyoto,

- Comets dirty water ice = ice (volatile) + dust (refractory)
 - -frozen reservoirs of the early solar nebula (cold region)
 - Two dynamical types of comets: Oort-cloud comets (OCs) and Ecliptic comets (ECs) different heliocentric distances of their birth places

Spectroscopic data of a large number of comets

–enable us to characterize the property of cometary grains
 –difference between Oort cloud & Jupiter family comets

- Understanding how primitive grains were formed or processed in the early solar nebula
 - a clue to understand the origin and evolution of the solar system
 - formation process of planetesimals from dust grains

Introduction

Crystalline silicate features have been found in mid-IR spectra of (Oort) comets(hot condensates T >~ 800K) anealing of amorphous silicate at the inner region of the early solar nebula ? a diffusive transportation toward the outer region where comets were born ?

To verify whether a diffusive transportation was effective or not a quantitative study of crystalline silicate in comets is crucial.

high quality mid-IR data with a moderate spectral resolution (R > 100) high sensitivity at mid-IR (not only brightest comets such as Hale-Bopp) different between Oort cloud & Ecliptic comets ?

No clear crystalline feature detection for ECs before Subaru

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo

Observations

Subaru + COMICS (8-13 µm; R~250)
 mid-IR low-resolution spectroscopy
 a powerful tool for the study of dust mineralogy

Oort cloud comets

C/2001 Q4, C/2002 V1 (NEAT) C/2001 RX14 (LINEAR) C/2004 Q2 (Machholz) C/2007 N3 (Lulin)

Ecliptic comets

2P/Encke, 78P/Gehrels 9P/Tempel → Deep Impact 21P/Giacobini-Zinner 73P/Schwassmann-Wachmann 4P/Faye, 17P/Holmes, 8P/Tuttle

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo

Subaru/Gemini conference, Kyoto,

Result (1)

We detected crystalline silicate feature in EC spectra !

Thermal emission model of comet

- Modeling of Thermal IR emission from grains in the coma
 (cf. Harker et al. 2002, Ootsubo et al. 2007)
 - the comet coma is optically thin
 all the grains are at the same heliocentric distance r_h
 equilibrium temperature T_d for each grain
 (set by the balance between solar radiation)
 the comet SED is the sum of each grain's IR spectrum
 size distribution, population of 5 mineral species

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo Subaru/Gemini conference, Kyoto, 2009-05-21

Thermal emission model

- Homogeneous spherical Mie grains: Q_{em} (= Q_{abs}) dust grains of 5 distinct and separate mineral species (optical constants in UV-FIR region are available)
 Effective Medium Theory (Maxwell-Garnet theory) is used for the modeling of the fractal porous dust grains (vacuum inclusion)
 - amorphous :
 - 1. amorphous carbon (optical constants from Edoh 1983)
 - 2. amorphous olivine (Dorschner et al. 1995)
 - 3. amorphous pyroxene (Dorschner et al. 1995
 - crystalline :
 - 4. crystalline olivine (forsterite) (Fabian et al. 2001 for T_d , Koike et al. 2003 for feature)
 - 5. crystalline pyroxene (orthoenstatite) (Jäger et al. 1998 for T_d, Chihara et al.2002 for feature)

		r _ի [AU]	Ν	a _{peak} [µm]	D	f_crystal (%)			am	orp	hou	IS
Q4 NEAT		1.02	3.6	0.2	3.0	71				ysta		e
		0.97	3.7	0.3	3.0	70	1.0					
V1 NEAT		1.18	3.5	0.5	2.8	66	0.8					
		1.15	3.7	0.5	3.0	<mark>69</mark>				_		
Hale-Bopp		0.97	3.7	0.2	2.5	79	0.6	l i			1	1
		1.21	3.7	0.2	2.5	<mark>68</mark>	0.4					
9P/Tempel (post-impact)		1.51	3.9	0.8	2.8	78-84	0.2					
73P-B/SW3 (fragmentation)		1.06	3.5	0.3	2.8	58-63	0					
(fragmentation)			3.5	0.4	2.72	62-65		78P	MS/:	2 41	ddog	sact)
17P/Holmes (burst)	Oort	como	e ve	Felin		mote			<u>" </u>	<u> </u>		_Ĕ
78P Gehrels Off Connets VS 78P Gehrels grain evolution on the nucleus of ECs?												
2P/Encke	314											d 6
4P/Faye	prog	> c ram	on-goi	ng co	ntinu	ous obs	erva	tio	nal			
8P/Tuttle		1.23	_	_	<u>-</u>							

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo Result (2)

Subaru/Gemini conference, Kyoto,

Oort cloud comets

C/2001 RX14 (LINEAR) - Jan 11, 2003 r_ = 2.06 AU, A = 1.39 AU

Wavelength [µm]

10 11 12 13

5 10⁻¹⁴

 $4 \ 10^{-14}$

3 10⁻¹⁴

2 10'14

1 10⁻¹⁴

7 10⁻¹⁸

6 10⁻¹⁵

5 10⁻¹⁵

 $4 \ 10^{-15}$

3 10'15

2 10'15

1 10'15

0

0

[W m⁻² µm⁻¹

Flux

[Wmⁱ²µm]

Flux

comets (fragmentation, burst, etc...) 8 10-15 6 10⁻¹⁵ W m^{is} µm $4 \ 10^{-15}$ 2002 V1 (NEAT) - Jan 10, 2003 Ě SW3B a 13 12 14 2 10-15 Wavelength [µm] 78P/Gehrels 2 – 2.01 AU, A – 1.02 AU 0.8 8 Wavelength [µm] SW3C a 8P_spectrum 1.2 10⁻¹³ 60 1.1 10⁻¹³ 17P_nucleus_3pix [Jy] 17P_ejecta_10pix [Jy] m__µm] 50 1 10⁻¹³

T_{pp} = 299 K

12

13

14

- 14

Flux [\

8P_3pix

9 10⁻¹⁴

8 10⁻¹⁴

7 10-14

6 10⁻¹⁴

8

9

10

11 Wavelength [µm]

> orbital parameters (birth place?)

10

Wavelength [µm]

11

12

13

9

40

20

P 30

active Ecliptic

• Mid-infrared spectroscopy

-powerful tool for the study of dust mineralogy

- Space telescopes, such as Spitzer Space Telescope (dried up last week!), can observe with broader wavelength range and higher sensitivity than Subaru and Geimini in mid-IR
- Spatial resolution achieved by the 8-m telescope of Subaru (and Gemini) surpasses that of space telescopes
 - -highly spatially resolved imaging and spectroscopy
 - -(in) homogeneity of a comet nucleus in dust mineralogy
 - -time evolution of the coma dust in the vicinity of the nucleus

Mauna Kea Observatories

Coordination with other Mauna-Kea telescopes

17P/Holmes outburst comet (2007-10-24 UT)

_ メニュー(M) 設定(S) 表示(V) データベース(D) ウィンドウ(W) ヘルプ(H)

17P/Holmes

📐 Comet for Windows - [光度グラフ1]

光度

7/1

10/1

1/1

4/1

7/1

10/1

1/1

4/1

Comet Holmes (17P) 2007/11/17-11/25 25cm F6 Newtonian + Nikon D80 60s×10

日付

7/1

Photo by Masaaki Hyakkai

Mid-infrared Observations of Comets with Subaru Telescope by T. Ootsubo 2009-05-21

Subaru/Gemini conference, Kyoto,

Summary

- We observed twelve comets by Subaru/COMICS in mid-IR.
- Subaru/COMICS has succeeded in detecting the clear crystalline silicate feature in several EC spectra, such as 9P/Tempel at the "Deep Impact" event and 17P/Holmes just after the explosive outburst phenomenon.
- There can be seen the slight difference between OCs and ECs in the dust mineralogy (especially crystalline-to-amorphoys ratio), but it is not a remarkable difference.
- It is suggested that OCs and ECs with different dynamic characteristics may have a similar origin or diffusive transportation was occurred in the early solar nebula.
- Collaborations between Mauna-Kea Telescopes are very effective for the comet science like Deep Impact event.