A Wide-Field Search for Massive PopIII Stars in High-z Universe in the Subaru Deep Field

Tohru Nagao (Ehime Univ.)

Main Collaborators:

Roberto Maiolino Roma Observatory
Yoshiaki Taniguchi Ehime Univ.
Nobunari Kashikawa NAOJ
Kentaro Motohara Univ. of Tokyo
Matt Malkan UCLA
Alessandro Marconi Florence Univ.
Daniel Schaerer Geneve Observatory
Takashi Murayama Tohoku Univ.
Chun Ly UCLA

History of the Universe

Big Bang

Recombination

z = \infty

First Stars

Reionization

z = 1000

Big Bang Nucleosynthesis

~ H, He (and D, Li, Be...)

z = 11

First-Metal Creation from BBNS gas cloud

z = 3

Metal Enrichment

Metal-enriched Universe

z = 0

Current Universe

Galaxy Evolution

0.3billion

13.7billion (year)

0.38million

2billion

Zero-age

0.38 million

Chemical Evolution of the Universe
What is PopIII? ...Massive Stars.

PopIII: First-Generation Stars
 — Created from BBNS (or “Zero-Metal”) Gas Clouds

Formation of Very Massive PopIII
 — Insufficient Cooling \rightarrow Suppressed Fragmentation

\sim Up to a few $10^2-10^3 \, M_{\odot}$
\sim Significant contribution to chemical enrichment in the early universe

Nakamura & Umemura (2001)
What is PopIII? ...Hot Stars.

Very High Effective Temperature
— No Metals in Atmosphere → Low Opacity

\(T_{\text{eff}} \sim 10^5 \text{K} \)

Tumlinson et al. (2003)

~ SED: characterized by very high \(T_{\text{eff}} \)
~ Emitting huge number of UV photons
~ Significant contribution to cosmic re-ionization in the early universe

~ Strong Ly alpha and He\(\text{II} \) emission lines
Spectrum of HII Regions around PopIII Galaxies

Characterized by strong H I and He II emission lines at the earliest phase (~ a few Myr) of the galaxy evolution

Schaerer (2002)
Where (When) do PopIII Stars Exist?

Tornatore et al. (2007)

Scannapieco et al. (2003)

PopIII possibly existed even at $z \sim 4-7$ ✈ currently accessible !!
Let's search for "Lyα-HeII dual emitters" as PopIII candidates
~ requiring "well-matched" combination of filters
~ requiring very wide FOV to find "rare" objects
Why not use Subaru/Suprime-Cam + Custom Filter Set !!
Observations

- $z=4.0$
 - \sim HeII@8200Å: “NB816”
 - \sim Lya@6080Å: “IA598”

- $z=4.6$
 - \sim HeII@9180Å: “NB921”
 - \sim Lya@6810Å: “IA679”

- NB816 & NB921: Existing deep data@Subaru Deep Field (SDF)
 - \sim originally for Lya emitters at $z = 5.7, 6.5$ (Taniguchi+05, Kashikawa+06)

- IA598 & IA679: Additionally obtained in April 2007 @ SDF
 - m_{lim}(IA598) = 26.52 (111min), m_{lim}(IA679) = 27.07 (231min)
 - \sim wider bandwidth ($\Delta\lambda \sim 300\text{Å}$): sensitive only to large-EW
 - ... no problem for us, because our targets are PopIII !!
Selection of Ly\(\alpha\)-HeII Dual Emitters

- for z=4.0
 ~ using IA598 & NB816
 ~ Cont – IA598 > 0.3 mag
 ~ \(EW_{\text{obs}} > 114\,\text{A}\)
 ~ 113 guys show IA excess
 ~ 4 guys show NB excess

- for z=4.6
 ~ using IA679 & NB921
 ~ Cont – IA679 > 0.3 mag
 ~ \(EW_{\text{obs}} > 143\,\text{A}\)
 ~ 234 guys show IA excess
 ~ 6 guys show NB excess
Results: Discovery of “Dual Emitters” !?

Nagao et al. (2008)

4 IA598-NB816 dual emitters
6 IA679-NB921 dual emitters

... candidates for PopIII !?
All of IA-NB dual emitters show “blue” B-V colors (B-V < 1.0)

Galaxies at z > 4 should show “red” B-V colors (B-V > 1.5)

IA-NB dual emitters: consistent to

[OII] & [OIII] at z=0.6 or z=0.8
Hβ & Hα+[NII] at z=0.2 or z=0.4

⇒ No “Lya-HeII dual emitters” found...
Upper Limit on the PopIII SFR Density (SFRD)

- Our survey sensitivity on SFR_{PopIII}
 \[L(\text{HeII}) = f_{1640} \times SFR_{\text{PopIII}} \]
 \[\sim f_{1640} : \text{depends on model parameters, e.g., IMF} \]
 \[\sim \text{adopting } f_{1640} \text{ reported by Schaerer (2003)} \]
 \[\text{[assuming Salpeter IMF with } 50 < M_{\text{PopIII}}/M_{\odot} < 500] \]
 \[[SFR_{\text{PopIII}}]_{\text{lim}} \sim 2 \ M_{\odot}/\text{yr} \]

- Upper limit on the PopIII SFR density ($SFRD_{\text{PopIII}}$)
 \[V_{\text{survey}} = 4.03 \times 10^5 \text{ Mpc}^3 \ (3.93 < z < 4.01 \text{ & } 4.57 < z < 4.65) \]
 \[\sim \text{no galaxies with } SFR_{\text{PopIII}} > 2 \ M_{\odot}/\text{yr} \text{ were found} \]
 \[\sim \text{assuming no PopIII formation with low } SFR_{\text{PopIII}} \]
 \[\sim [SFRD_{\text{PopIII}}]_{\text{lim}} = [SFR_{\text{PopIII}}]_{\text{lim}} / V_{\text{survey}} \]
 \[SFRD_{\text{PopIII}} < 5 \times 10^{-6} \ M_{\odot}/\text{yr/Mpc}^3 \]
SFRD(PopIII): Comparison with a Theoretical Work

- Expected PopIII fraction is lower at lower redshift.
- Expected $SFRD_{\text{PopIII}}$ shows a "peak" at rather low-z (~6).
- Our upper limit on $SFRD_{\text{PopIII}}$ is higher than model prediction, but not so discrepant!!
- Further observational limits will give interesting constraints on PopIII theoretical works!!

SFRD model:
Tornatore et al. (2007)

Observational limit:
Nagao et al. (2008)
Summary

- Our new survey for “Lya-HeII dual emitters”
 - a new strategy to search for PopIII in high-z galaxies
 - selecting PopIII candidates by combining NB filters

- No candidates found
 - [OII]-[OIII] dual emitters are detected
 - sensitivity: \(SFR_{PopIII}^{lim} = 2 \, M_{\text{sun}}/\text{yr} \)
 - \(SFRD_{PopIII}^{lim} = 5 \times 10^{-6} \, M_{\text{sun}}/\text{yr}/\text{Mpc}^3 \)
 - very close to theoretical predictions

- Our future plan
 - “Hyper S-Cam”: FOV = 1.5 deg\(^2\)
 - (Subaru next-generation camera [2011-?])
 - \(x10 \) deeper limits on \(SFRD_{PopIII} \)
 - at 4 < z < 5 \(\rightarrow \) constraints on models