High Resolution Near c images of the 1 Tau -imrared Coronagrad Tomonori Hioki¹ (otopen@kobe-u.ac.jp), Yoichi Itoh¹, Yumiko Oasa², Misato Fukagawa³, SDPS

(1:Kobe University, 2:Saitama University, 3:Osaka University, 4:NAOJ etc)

☆ Abstract☆

We present high resolution (sub-arcsec) near-infrared images of three T Tauri binary systems; UY Aur, XZ Tau, and FS Tau, taken with the Coronagraphic Imager with Adaptive Optics (CIAO) on the Subaru Telescope. We detected a half-ring-shaped circumbinary disk around UY Aur with a bright southwestern part but a barely detectable northeastern portion. The disk is not uniform but has three features. A structure extends to about 2.4" from the XZ Tau's secondary in the northeast region of the binary. Combining with the HST/ACS archival images and [Fe II] spectra taken with the Subaru/IRCS, the structure is identified as a wall of a cavity blown by the previously known outflow. Five circumbinary features were detected around FS Tau. NW. SW, and NE arms are indicative of cavity wall created by undetected bipolar outflow from the binary.

1. Introduction

1.1 Motivations

 Many young low-mass stars (T Tauri stars) have protoplanetary disks and outflows.

- More than half of T Tauri stars are binaries in view of Fig 1 Circumbinary environme the observational results (e.g., Ghez et al. 1993) and theoretical predictions (e.g., Hennebelle & Teyssier 2008)
- A limited number of studies (several dozen) have so far examined the environments around T Tauri binary systems.
- The binary system is predicted to have two kinds of disks: a circumstellar (CS) disk associated with each star and a ring-shaped circumbinary (CB) disk around the binary system (Fig1; Artymowicz & Lubow 1996).

To study CB environments, we observed various T Tauri binary

systems with the Subaru/CIAO.

1.2 CIAO - Coronagraphic Imager with Adaptive Optics

Coronagraphic + AO --> CIAO can detect the CB structures relative-easily.

Example: GG Tau (Fig2; e.g., Itoh et al. 2002)

• *a* = 28AU, *q* = 0.9

A ring-shaped and smooth CB disk

1.3 Targets

Three T Tauri binary systems in Taurus cloud ($d \sim 140 \text{ pc}$)

	Semimajor axis <i>a</i> [AU]	Mass ratio <i>q</i> (primary mass [M _{sun}])	H magnitude [mag]	
UY Aur 126		0.6(0.6)	8.0	
XZ Tau	42	0.8(0.4)	8.1	
FS Tau 56		0.4(0.5)	9.2	

1.4 Previous studies

(DUY Aur (Close et al. 1998. Duvert et al. 1998. Potter et al. 2000)

- J, H, and K' with AO (Fig3)
- Millimeter continuum and ¹³CO line
- · A centrosymmetric polarization pattern
- →UY Aur has the CB disk of gas and dust.

(2)XZ Tau (Mundt et al. 1990, Krist et al. 2008)

• [S II] bipolar jet extended to 10"-20"

- · A succession of a bubble created by the jet
- · The jet sources of both binary components

- · Surrounding reflection nebulae extended to 800AU
- H_αnebulosity at the north region of FS Tau

The circumbinary nature is unknown so far.

2. Ob	servations	(ions – Subaru/CIAO (H-band: 1.6 um)					
Targets	Obs Epoch	Mask size ["]	Int time [sec]	FWHM ["]	Additional data		
UY Aur	2005.11.9	2.0	1440	0.1	-		
XZ Tau	2005.11.11	0.6	720	0.1	HST/ACS polarization		
FS Tau	2007.12.15	0.8	390	0.3	HST/ACS polarization		

3. Data Reduction (IRAF)

1Dark subtraction

- 2Flat-fielding by twilight-flat
- 3Hot and bad pixel removal
- 4 Sky subtraction

5Shift each frame to adjust the position of the star

6 Rotation of PSF reference-frames to adjust the position angle of the spider Combining (object-frames - PSF reference-frames)

4. Results

4,1 UY Aur disk (Fig 6; Hioki et al. 2007)

CB disk: half ring-shaped. asymmetric brightness

A cavity between the binary and the disk

OClumpy structure

- Distance~520 AU, Radius~90 AU
- Brightness: ~15.3 mag arcsec⁻²
- →A local peak of the dust density $(\sim 5.4 \times 10 - 18 \ [g/cm^3])$

- 2 Material in the cavity →Clumps or accretion material from the CB disk

3Arm-like structure

→Due to dust accretion from the outer region of the disk or stellar encounter

4.2 FS Tau

Fig 7 (left) H-band coronagraphic image (middle) HST V-band image (right) Storks P image

	H: CIAO (Fig 7 left)	l∕: Storks I (Fig 7 mid)	Storks P (Fig 7 right)
1 NW arm	Yes	Yes	Yes
②SW arm	Yes	Yes	Yes
3NE arm	No	Yes	Yes
④North bright feature	No	Yes	Yes?
5 SE bright feature	Yes	No	Yes?

123 NW. SW. and NE arms

 Their radial profiles: ∝ r⁻²: more flared structures than an optically thick disk (Whitney & Hartmann 1992)

- · Parts of cavity wall created by FS Tau's outflow?
- (Pair of NW and SW arms, given the outflow to the west of the binary)
- North bright feature
- Brightness ~ 18.9 mag arcsec $^{-2}$ at the V-band
- We could detect this feature in the *H*-band if it has similar V-H color to FS Tau
- (4.3 mag; Kenyon & Hartmann 1995) • Possibly not only dust scattering but also emission line $(H\alpha)$

5 SE bright feature

- Brightness~15.0 mag arcsec⁻² at the H-band
- Not detect in the V-band image but centro-symmetric polarized pattern \Rightarrow CB disk/envelope?

4.3 XZ Tau (Hioki et al., submitted)

CIAO detected an elongated structure!!

1A jet from XZ Tau S?

 \Rightarrow We clear that [Fe II] emission was not detected around this structure with the Subaru/IRCS (Fig 9). Therefore, not jet!!

2A cavity wall created by the XZ Tau jet?

- The structure = edge of the north bubble (Fig 9)
- Radial profile: $\propto r^{-1.6}$ (optically thick flared structure)
- Centrosymmetric polarization pattern (P~6%)

 \Rightarrow We conclude that the elongated structure is a wall of a cavity blown by the previously known blueshifted outflow.

Fig 8 XZ Tau circumbinary structure (H-band coronagraphic image) with -band echelle spectra around [Fe II] 1.644 um

keeping proposition and a provident of the second 1.65 1.658

Fig 9 The H-band coronagraphic image (contour: same as Fig 8) overlaid on the HST optical image (color).

- Fig3. UY Aur circumbinary disk

Fig4 FS Tau A and B region