Subaru-Gemini Meeting

Recent Progress in Theory of ISM & Star Formation

Shu-ichiro Inutsuka (Kyoto Univ. → Nagoya Univ.)

May 21, 2009

Outline

- Dynamics of Multi-Phase ISM
 Magnetic Field Amplification & CRs
- Expanding HII Region
- Formation & Evolution of Protostars
 - Outflows and Jets
 - Hybrid Scenario for Planet Formation

Radiative Equilibrium

Shock Propagation into WNM 0.000 Myr

t =

Koyama & SI (2002) ApJ 564, L97

WNM Swept-Up by 14.4km/s Shock (3D) Koyama & Inutsuka 2002 х

Y

Z

Summary of TI-driven Turbulence

 2D/3D Calculation of The Propagation of Shock Wave into WNM

via Thermal Instability

- fragmentation of the cold layer into cold clumps with long-sustained supersonic velocity dispersion (~ km/s)
 - 1D: Shock $\Rightarrow E_{th} \Rightarrow E_{rad}$ 2D&3D: Shock $\Rightarrow E_{th} \Rightarrow E_{rad} + E_{kin}$ $\delta V \sim a few km/s < C_{S,WNM}$

Koyama & SI (2002) ApJ 564, L97

Spiral Galaxy M51 ("Whirlpool Galaxy")

Spitzer Space Telescope • IRAC

NASA / JPL-Caltech / R. Kennicutt (Univ. of Arizona)

ssc2004-19a

M51 Synchrotron

M51 6cm Tot.Int.+B-Vectors (VLA+Effelsberg)M51 6cm Pol.Int.+B-Vectors (VLA+Effelsberg)

Copyright MPIR Bonn (A.Fletcher & R.Beck)

Copyright MPIR Bonn (A.Fletcher & R.Beck)

Energy Density of Magnetic Field

R. Beck (2004)

Dynamics of ISM

Major Components:

- Hot Gas + Warm Gas + Cold Gas
- Magnetic Field
- CRs

Timescales: Spiral Wave (10⁸yr) > SNe (10⁶yr) > Expanding HII Region

Supernova Shock in Multi-Phase ISM

 $\nabla \rho \times \nabla p \neq 0 \rightarrow \text{Vorticity Creation} (\delta v \sim c_s)$ Magnetic Field Amplification via Turbulent Dynamo $B_{\text{max}} \sim 1\text{mG} (\beta \sim 1 \text{ @post shock})$ Inoue, Yamazaki, & SI (2009) ApJ 695, 825

Result

X-ray Observations of Supernova@age~10³yr $B \sim 1 \text{mG}$ (Bamba+2002, Uchiyama+ 2008, etc.)

1st Order Fermi Acceleration

Explosions in Multi-Phase ISM

Expanding HII Region

Sh104 classical HII region, *R*≈4pc

embedded young cluster in one clump

Deharveng et al. (2003) A&A, 408, L25

Direct Evidence of Collect and Collapse Scenario? Possible?

Other Similar Regions

Deharveng, Zavagno & Caplan (2005), A&A, 433, 565

Dust emission red : 21.3µm (grains) green: 8.3µm (PAHs)

Many Similar Regions Dust ring around HII regions + embedded point sources

Radiative Feedback for Molecular Cloud

Sh104 ; Deharveng et al. (2003)

• lonizing photons ($h\nu > 13.6 \text{eV}$)

Dissociating photons

11.0eV < h
u < 13.6eV

Negative Feedback

destroy molecular cloud and

suppress star formation (H2 \rightarrow HI \rightarrow HII) (e.g., Whitworth 1979) V.S

Positive Feedback

shock front sweeps up ISM

to trigger star formation (compression of H2) (e.g., Elmegreen & Lada 1977)

Expansion in Molecular Cloud

• Does molecular gas accumulates in the shell shielding FUV photons?

Gas Dynamics

Front-Overtaking

region expands to the observed radius of Sh104.

Mass Evolution

Condition for Star Burst

If *M*_∗ > 20M_o, then number of massive stars increases exponetially.

Hosokawa & SI (2006) ApJ **648**, L131

Early Phase of Protostar

Machida et al. (2006, 2007, 2008, 2009) Dynamic Range: 10^{9} cm < Length < 10^{17} cm We have good understanding upto $M = 0.1 M_{\odot}$!

Star Formation Theory Extended

Rapid Progress in Our Understanding of Formation of Protostars

Further Evolution to Formation/Evolution of Protoplanetary Disks

→ Star formation process determines Initial Condition of Planet Formation!

Formation of Planetary Mass Companions in Protoplanetary Disk

Machida, SI, & Matsumoto 2009

Formation of Protoplanetary Disk Sedimatation of Dust Grains onto Equitorial Plane Formation of km-size Planetesimals Coalescence of Planetesimals to Form Protoplanets **Gas-Capture of Massive Jovian Planets Dispersal of Gas**

<u>Two Problems</u> in Standard Model of Planet Formation

Problem 1: Kelvin-Helmholz instability hinders sedimentation!

Problem 2: Gravitational interaction between planet and gas disk leads to planet migration onto the central star!

Copyrighted by Y.Imaeda, 1999

Discovery of Far-Away Planets

- Kalas et al. (2008) - *R*=98AU
- Marois et al. (2008)
- R = 68 AU
- Lagrange et al. (2008) - *R*=8AU

Something wrong with standard core accretion scenario!

Shepherding for Dust Grains

"Hybrid Scenario"

 Scenario 1: Giant planets fall onto the central star.
 → Remnant Planetesimals may proceed to (classical) core accretion scenario.

Scenario 2: Giant planets survive gas dispersal.
 → Giant planets (no core) and rocky planets

NB: This can be a formation scenario even for our solar system if M_{core} of Jupiter is very small.

Gap in Mass Distribution?

- Brown Dwarf Desert: $M \sin(i) < 0.01 M_{\odot}$ $M \sin(i) > 0.01 M_{\odot}$
- \rightarrow different formation mechanism?
- → Smaller mass objects are formed by core accretion model?

Mass Function of Companions

Theoretical Discovery

Formation of Gaseous Giant Planet

in MHD

→ Driving of Outflow!

Machida, SI, & Matsumoto (2006) ApJ **649**, L129

Discover Forming Planets!

Artwork by G. Bryden

Summary

Dynamics of Multi-Phase ISM Kolmogorov Turbulence, mG Mag. Field, ... **Expanding HII Region** Feedback depends on M_{*} of Central Star! Quenching or Star Burst **Recent Theory on Protostellar Collapse** → Natural "Hybrid Scenario" Planetary Mass Companions in PP Disks Shepherding of Dust Grains Formation of Planetesimals

Temperature Evolution at Center

Masunaga & SI 2000, ApJ 531, 350

Bimodal Binary Formation

Std Model of Protoplanetary Disks

$$\Sigma_{e}(r) = 1.7 \times 10^{3} f_{\Sigma} \left(\frac{r}{1\text{AU}}\right)^{\frac{3}{2}} \frac{\text{g}}{\text{cm}^{2}}$$

$$T(r) = 280 \left(\frac{r}{1\text{AU}}\right)^{\frac{1}{2}} \text{K}$$

$$C_{S}(r) \approx 10^{5} \left(\frac{r}{1\text{AU}}\right)^{-\frac{1}{4}} \left(\frac{\mu}{2.34}\right)^{-\frac{1}{2}} \frac{\text{cm}}{\text{s}}$$

$$\rho(r, z) \approx 1.4 \times 10^{-9} f_{\Sigma} \left(\frac{r}{1\text{AU}}\right)^{-\frac{11}{4}} \left(\frac{M_{*}}{M_{O}}\right)^{\frac{1}{2}} \left(\frac{\mu}{2.34}\right)^{\frac{1}{2}} \text{g/cm}^{3}$$

$$B(r) \approx 1.9 f_{\Sigma}^{\frac{1}{2}} \left(\frac{r}{1\text{AU}}\right)^{-\frac{13}{8}} \left(\frac{\beta_{c}}{100}\right)^{-\frac{1}{2}} \text{G}, \quad \beta_{c} = \left(\frac{2\text{C}_{S}^{-2}}{\text{v}_{A}^{-2}}\right)$$

Ionization Degree in PP Disks

"Dead Zone" can be removed by self-sustained ionization! SI & Sano (2005) ApJ **628**, L155

A Possible Path Toward Gravitational Instability to Form Planetesimals

Michikoshi & SI (2006) ApJ 641, 1131

GI

Effect of MRI on Planet Formation

Powerful MHD Wind from Disk

Just Like Solar Wind

Dispersal Timescale ~ 4000yr (locally)

~ a few Myr for typical disk models

in Ideal MHD

Suzuki & SI (2009) ApJ 691, L49

See Poster by T. K. Suzuki

Quasi-Steady Disk Wind

Dispersal Timescale

- ~ 4000yr (locally)
- a few Myr for typical disk models
 in Ideal MHD

Suzuki & Inutsuka (2009) ApJ 691, L49