The unexpected silicate emission features in a type 2 AGN
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Fig. I: Top = Spitzer/IRS and Gemini/Michelle spectra of NGC21I0 (3.7~
10.7° and 0.36" siits, respechively). The hatched area shows the telluric
0O, band, which is not well removed by division by the standard sfer.
The Michelle spectrum was callbrafed using the N’ imaging but has
been scaled slightly for ease of comparison with the IRS data. Botlom -
Continuum-subtracted Michelle and IRS spectra of NGC 2110 (inset)
and continuum-subfracted IRS spectra of NGC 2II0 and NGC Y998
(Sturm et al. 2008, emission lines removed). The NGC 3998 spectrum
has been muftiplied by 1.6 and the data in the main figure displayed on
a logarithmic wavelength scale fo emphasize the feature profiles.
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We also compare the Spitzer spectrum with spectra
of a type 1 LINER (Sturm et al. 2005) and several
type 1 QSOs (Hao etial. 2007). In terms of the peak
wavelength, feature profiles and 10/20 um feature
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To distinguish between NLR and torus origins for“the silicate features, we
fit the Nenkova et al. (2008) clumpy torus models to 2-20 um spectroscopy and photometry of
NGC 2HO (Fig. 2). In a clumpy torus (below), both hok and cold cloud\faces are visible from
any given line of sight, and classification as a type 1 or 2 AGN'dependd-on the distribution of
clouds along the line of sight, rather than I::eingp trict function of viewing angle. The total
cloud distribution determines the MIR emission, So vdrious combinations of total number of
clouds, outer extent, and radial profile produce similar spectra. The best-fitting models all
have-near-equatorial views through the torus, and imply column densities sufficient to obscure
the BLR. The inclination of the torus is driven by the NIR/MIR ratio in the data; more face-
on models predict too little MIR emission compared to the observed NIR flux. Fig. 2b shows an
alternative model, again with an edge-on torus. Although formally a poorer fit, the 10 um
silicate feature does not show the “double-peaked,” self-absorbed structure seen in the other
models. It is well known that silicate emission features in AGN differ from those observed in
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" the Galactic ISM (e.g. Li et al. 2008); incorporating different dust compositions in the clumpy

models may allow the details of the fits to be improved.

We have shown that the silicate emission features in type 2 AGN can come from an edge-on
clumpy torus, and need not necessarily arise in the NLR. SED modelling is a key tool in
understanding AGN populations and their central engines, and the complexity of the torus
contribution should not be underestimated.

Fig. 3 Left - schematic of a clumpy
forus (Nenkovae et al. 2008). Right -
example of a smooth ftorus (Pler &
Krolik 1992)




