

Lights from Sky and Discharge Tubes in Laboratory.

Machine Time for Fabrication of Ge Immersion Grating

Prototype: 30 x 30 x 72 mm → about 400 hours

Regular: 120 x 120 x 270 mm → several 1000 hours?

Dominant time spent tooling (shaping) for a grinding cup.

Novel Immersion Grating

Fabrication Method for Novel Immersion Grating

• Smooth surface profile is obtained by a dicing saw.

Tooling of a dicing saw is easy.

Machine time for regular: 120 x 120 x 270 mm

[N. Ebizuka et. al., SPIE 6273, 2006]

Scattering Loss of Immersion Gratings

Scattering loss: Ls is given by, Ls = 1-exp { -($4\pi n \sigma \cos \theta / \lambda$)²}, where σ is surface roughness in rms.

$n = 4.0, \sigma = 0.05 \mu m, \lambda = 10 \mu m$

θ [deg.]	Ls[%]	θ [deg.]	Ls[%]	
0	6.12	45	3.11	n
15	5.72	60	1.57	
30	4.62	75	0.42	
Ordina	rv immer	sion grati	ng $(\theta = 0)$	γŧ.

Ls = 6.12 % Novel immersion grating ($\alpha = 60, \theta = 60$) Ls = {1-(1-0.0157)²} x 100 = 3.12 %

Sensitivity of Prototype IRHS

 $N_{photon}(Dark) = 150 \ photons \cdot pixels^{-1} \cdot sec^{-1}$

N_{photon}(Background Radiation) :

 T_{room} = 290 K : 1,500 photons pixels⁻¹ sec⁻¹ T_{eff} = 210 K : 250 photons pixels⁻¹ sec⁻¹

cf. Full-well Capacity (Si:As, 4 K) ~ 200,000 photons pixels 1

Detectable If $N_{photon}(Signal) > \{N_{photon}(210 \text{ K})\}^{1/2}$

Cryogenic Cooling Allows Us to Extend Integration Time & Enhance SNR.