

PROBING REIONISATION WITH THE UKIDSS QUASAR J1319+0950

Mitesh Patel Imperial College London

Co-Authors: Steve Warren, Daniel Mortlock, Bram Venemans, Richard McMahon, Paul Hewett, Chris Simpson, Rob Sharpe

m.patel06@imperial.ac.uk

Mitesh Patel

Mitesh Patel

Finding high redshift objects...

 Neutral hydrogen clumps absorb hydrogen at the clump redshift

 Produces absorption blueward of the emission redshift

Mitesh Patel

Finding high redshift objects...

JENAM 2009

Venemans et al. (2007)

- Neutral hydrogen clumps absorb hydrogen at the clump redshift
- Produces absorption blueward of the emission redshift
- Many clumps leads to complete absorption blueward of Lyα
- $\square \quad Ly\alpha \text{ forest}$

Thanks to Steve Warren

Mitesh Patel

www.ukidss.org

- Optical surveys are limited to zband dropouts
- UKIRT Infra-red Deep Sky Survey
- At least 3 magnitudes deeper than 2MASS in J,H and K
- Consists of 5 mini-surveys
 - Galactic Clusters Survey (GCS)
 - Galactic Plane Survey (GPS)
 - Deep Extragalactic Survey (DXS)
 - Ultra Deep Survey (UDS)
 - Large Area Survey (LAS)

HII Ionised Region

Mitesh Patel

Large Area Survey

- Observes Y (20.2), J (19.6), H
 (18.8) and K (18.2)
- Aims to cover 4000 deg^2
- Area also covered by SDSS
- DR4: observed 982 deg² in all four bands

Mitesh Patel

Finding quasars with UKIDSS

- Use models by Hewett & Madison (2005) and look at expected colours
- Use both SDSS and UKIDSS tables
- Find objects with red i-Y colours and blue Y-J colours

ULAS J1319+0950 – Gemini Spectra

Power Law Fitting

Mitesh Patel

Transmitted Flux Ratio

- SDSS found a number of quasars
- Follow the analysis of Fan et al. (2006)
- Fit a power law to the quasar continuum
- \blacksquare Select an upper limit redshift not affected by Ly α
- Take a region size of $\Delta z = 0.15$
- Measure the ratio of the original flux to the absorbed flux
- **I** Take multiple regions, up to a lower limit at $Ly\beta$

Transmitted Flux Ratio

SCENTA SCENTA MARKAN DECUS TA

- Fan et al. (2006)
- Fit a power law to the quasar continuum
- \blacksquare Select an upper limit redshift not affected by Ly α
- Take a region size of $\Delta z = 0.15$
- Measure the ratio of the original flux to the absorbed flux
- **I** Take multiple regions, up to a lower limit at $Ly\beta$

Transmitted Flux Ratio

SCENTAL DECUSTO

- Fan et al. (2006)
- Fit a power law to the quasar continuum
- Select an upper limit redshift not affected by $Ly\alpha$
- Take a region size of $\Delta z = 0.15$
- Measure the ratio of the original flux to the absorbed flux
- **Take multiple regions, up to a lower limit at Ly** β

Effective Optical Depth

 $\tau = -\ln (tfr)$

Mitesh Patel

Proximity Region

JENAM 2009

- As the IGM gets more neutral, the absorption nearer Lyα gets stronger
 - Damping wings of the absorption affect the Lyα line
- As we go to higher redshifts we expect a sharper cut-off between the emission line and the forest

Proximity Region

Fan et al. (2006)

Mitesh Patel

J1319 VLT Spectrum

JENAM 2009

Dark Gaps

Mitesh Patel

Estimated Numbers of Quasars

- We found two quasars (z=5.72 and z=6.13) and have rediscovered two others (z=5.82 and z=5.93)
- By extrapolating the quasar luminosity function to higher redshifts and accounting for the estimated completeness we expect:
 A 5.8<z<7.2 quasar every 200 deg²

A 6.4<z<7.2 quasar every 500 deg²

So, from DR4 (Y+J: 1056 deg²) we expect: $5.3 + / - 2.3 \ z = 5.8 - 7.2 \text{ quasars}$ (4 found) $2.1 + / - 1.5 \ z = 6.4 - 7.2 \text{ quasars}$ (0 found)

UKIDSS DR5

Mitesh Patel

Summary

- Quasars are ideal probes for determining when re-ionisation occurred
- We can see the evolution of the IGM in their spectra
- Even a small sample of z > 6.4 quasars will reveal the nature of the IGM
- As UKIDSS continues, it will discover these objects