'Review of Cosmology, Large-scale Structure and Galaxy Formation Observations'

Karl Glazebrook

The reality

- Gemini studies of galaxy evolution

Focus on red galaxies
(Iwata-San, Subaru review - blue LBGs)

- Red Galaxies at $1<z<3$

What have we learned from spectroscopy?
The peculiar problem of red nuggets

- Massive Blue galaxies at $1<z<2$

Something new from Gemini + Spitzer
(GDDS Papers X and XII)

Cosmology Poster

PASJ: Publ. Astron. Soc. Japan , 1-??,
(C) 2009. Astronomical Society of Japan.

Photometric $\mathrm{H} \alpha$ and [О II] Luminosity Function of SDF and SXDF Galaxies: Implications for Future Baryon Oscillation Surveys

Masanao Sumiyoshi, ${ }^{1}$ Tomonori Totani, ${ }^{1}$ Shunsuke Oshige, ${ }^{1}$ Karl Glazebrook, ${ }^{2}$ Masayuki Akiyama, ${ }^{3}$ Tomoki Morokuma, ${ }^{4}$ Kentaro Motohara, ${ }^{5}$ Kazuhiro Shimasaku, ${ }^{6,7}$ Masao Hayashi, ${ }^{6}$ Makiko Yoshida, ${ }^{6}$ Nobunari Kashikawa, ${ }^{4}$ and Tadayuki Kodama ${ }^{4}$

Gemini:

Studies of red galaxies at high-z

‘Gemini Deep Deep Survey’ Team

Red Galaxies $1<z<3$

2000-2004

They Exist!

Lyman Break selection does not suffice.

GDDS Paper III. Colours and Masses

$$
\begin{aligned}
& 1-K>4=49 \% \\
& \text { of } 1.3<z<2 \\
& \text { mass density }
\end{aligned}
$$

"Distant Red Galaxies"

Mass vs UV output

High Mass, Red, Low SFR galaxies What do they look like?

HST images: red \& dead galaxies

Star Forming Galaxies $1.3<\mathrm{z}<2.0$

Ellipticals: evolution

Space density evolution

Ellipticals: evolution

Space density evolution

Ellipticals: colour evolution

() Massive ellipticals

Old Galaxies at $1.3<\mathrm{z}<1.8$

$<\mathrm{z}>=1.3$
$<\mathrm{z}>=1.8$
2Gyr
Pegase Model

GNIRS spectra

GNIRS spectra - 29h!

Kriek et al. (2009)

Sizes?

Size measurements

 Image $r^{1 / 4}$ model diff $x 10$ Image $r^{1 / 4}$ model diff $\times 10$NICMOS FI60W $1.3<z<1.9$

van Dokkum et al. (2008) z~2.3 NICMOS + Keck LGSAO

Size-Mass relation

Size-Mass relation

Star's don't evolve (colours, spectra)

Space Density DOES

Size / physical density DOES

「一体全体，どういう わけ？」

Ideas

- Dry mergers - no mass growth?
- Pathological IMF evolution?
- Errors in age measurements?

Ages < 2 Gyr would help considerably
Rest frame optical spectra (NIR)

- N:1 mergers? 'Nuggets' are the 'core' of local E's?

Add lots of energy but no mass. e.g. dwarfs (Hopkins, Bezanson)

- 'Hiding mass' in diffuse haloes at $z=0$, e.g. BCGs
- Non-adiabatic (rapid) expansion (Fan L., et al. 2008)
- Wacko CDM models??

Part 2

Massive Blue Galaxies - a surprise

 Observations- 3/4 GDDS Fields observed for 3.3 h each
- $5^{\prime} .2 \times 5^{\prime} .2$ dithered exposures to cover whole GDDS field
- InfraRed Array Camera (IRAC)
- 3.6, 4.5, 5.8 and $8.0 \mu \mathrm{~m}$ coverage
- Detect masses down to $5 \times 10^{8} \mathrm{M}_{\circ}$
- Reduced by Spitzer Post-Doc fellow Haojing Yan with current SSC tools
- Improved spatial resolution from I".2/pix to 0".6/pix

Goal: Test stellar mass measures (rest-frame $2 \mu \mathrm{~m}$ fluxes)

Goal

Test stellar mass measures (rest-frame 2y f fluxes)

The Surprise

Mentuch et al. (2009)

Origin of 3 micron XS?

- T~1000K ('hot'?) component
(noted before by numerous authors, c.f. 'standard' 200K ('warm'?) and 20-50K ('cold') mid/far-IR dust components)
- Fits as 'graybody' cuum + small PAH contrib.
- Reflection nebulae?
- Cirrus?
- Dusty Post-AGB stars?

Energetics don't work!

A new hypothesis...

The Credit

A new hypothesis...

The Credit

A new hypothesis...

Circumstellar disks?

Mentuch et al. (2009)

$$
\mathrm{J}-\mathrm{H} \text { Vega }
$$

Does it work?

- M/L data as a $\mathrm{f}(\mathrm{M})$ for circumstellar disks
(from Dullemond et al. 2001)
- Lifetime of 1 Myr for excess
- Feed in to SFR model with Baldry \& Glazebrook (2003) IMF

Does it work?

Mentuch et al. (2009)

Does it work?

Yes!!

Take home messages

- Can observe red galaxy build-up since $z=3$
- Strong size evolution in Elliptical galaxies

Factor of 4 since $z=2$!
Do we really understand galaxy evolution?

- Star-forming galaxies display L-band excess

Circumstellar disks around O stars? $\rightarrow \sim 1000 \mathrm{~K}$ dust?
(Note L XS light is dominated by M>20M॰ stars)
Planet formation at $z=2$???

- z<4 Galaxy evolution is still INTERESTING!!!

質問の時間です。

Backup slides

Normalized sizes

