A search for faint H α -emitting galaxies at redshift z~0.84

Junko Ueda^{1,2}, Takashi Ichikawa², Masaru Kajisawa², Chihiro Tokoku²

(1:University of Tokyo/NAOJ, 2:Tohoku University)

ABUSTRACT

We present the results of a search for H α -emitting galaxies at redshift z=0.84. We used very deep near-infrared imaging data taken with the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope. We observed a 28 arcmin² field in the Great Observatories Origins Deep Survey-North (GOODS-N) to investigate line emitters. Our data reached J \sim 26.2 and NB119 \sim 25.0 (ABmag,5 σ). By analyzing these imaging data, we found about 30 candidates of emission line objects. Among them, the redshifts of 3 objects have been confirmed by the spectroscopic studies in literature to be z ~ 0.84 and the photometric redshifts of 2 objects are consistent with z ~ 0.84. Therefore we obtained 5 H α -emitting galaxies at z ~ 0.84.

The star formation rate density

The star formation rate (SFR) density, ρ_{SFR} , is an important constraint on galaxy formation and evolution. It has been noted that ρ_{SFR} steeply increases from z = 0 to $z \sim 1$, and is constant between $z \sim 2$ and $z \sim 5$. Then it declines beyond $z \sim 5$. There are several SFR estimators. H α emission is one of them, and the SFR density can be estimated from the H α lumInosity function.

\triangleright The H α luminosity function

An approximate shape of the H α luminosity function has been determined by previous works. However, there are few data at the faint end. Our data are deeper than previous studies, e.g., $J(3\sigma) = 22.30$ (Villar et al. 2008), $J(3\sigma)$ ~ 22.8 (D.Sobral et al. 2009), and allow us to detectfainter objects and estimate a H α luminosity function at the faint end function with high accuracy.

Fig1. The Hα luminosity (D.Sobral et al. 2009)

Observations

MOIRCS Deep Survey in GOODS-North Region (2006-2008)

Fig4.Color-magnitude diagram for GOODS-N

We discard the H α -emitters in the low S/N area, e.g., at the edge of the frame and bad pixels. The final area is about 20 arcmin². The yellow and red lines shows the criteria (1) and (2), respectively. All extracted sources are plotted in green. The candidate H α emitters are replotted in blue. There are 30 sources which satisfy the criterion.

Selection of Hα emitters at z~0.84

The candidates of H α emitters selected by the present criteria could be contaminated by other line emitters. Therefore we checked their spectroscopic redshifts or photometric redshifts.

 Instrument : MOIRCS on the Subaru Telescope Pixel scale = 0.117"
 Field : GOODS-N GT-2
 α(J2000) = 12h 36m46.s 62
 δ(J2000) = + 62° 13' 15." 6
 field of view = 4'×7'=28arcmin

⊳Filters :

Broad-Band filter J(1.26µm/0.17µm), K(2.14µm/0.31µm) Narrow-Band filter NB119(1.19µm/0.014µm) -----trace Hα line from z ~ 0.84 (the central wavelength/the bandwidth) ▷Exposure time [hours] : 28.2 (J), 28.0 (K), 30.0 (NB119)

Fig2. MOIRCS

Fig3. GOODS-N

<u>Method</u>

Selection of narrowband excess objects

We used a narrowband technique to select NB119-excess objects. We made the catalog of the objects using Sextractor. Objects were extracted using the double-

Among 30 candidates, the redshifts of 6 have been confirmed by the spectroscopic studies in literature. For other 24 candidate, we obtained the photometric redshifts in the catalog of Kajisawa et al. (in preparation). As a result, we found 5 object (3 of 5 are measured spectroscopic redshifts) are consistent with $z \sim 0.84$. In figure 5, we show redshift of candidates.

The Hα luminosity

We estimated the H α luminosities for detected H α emitters. At this time we corrected them using the method of D.Sobral et al (2009). We measured log(L_{H α}) \sim 42.0. Our study will enable us to plot a new point on the luminosity function at the faint end function.

Log(Hα)	M _v	U-V
40.76	-20.79	0.39
41.26	-20.25	0.19
41.46	-19.95	0.22
41.87	-19.53	-0.27
41.34	-18.24	-0.58

Fig6. The H α luminosities

image mode. The narrowband frame is used as a reference image for detection, and then fluxes are measured in a 1".2 diameter aperture. Candidates were selected the following criteria :

J - NB119 > 0.3 (1)

J - NB

The former criterion corresponds EW > 50 Å, and the latter is the 5 σ er- ror of the color(J-NB119), where σ is defined by the following formula :

$$5\sigma(J - NB119) = -2.5\log[1 - \sqrt{(f_{5\sigma_{NB119}})^2 + (f_{5\sigma_J})^2} / f_{NB119}]$$

We chose the higher level for the latter criteria than previous studies to detect more reliable candidates.

Future works

5 objects have been selected as H α emitters using the narrowband technique, and we estimated the H α luminosities of them roughly at this time. These H α luminosities are not still corrected sufficiently, so we will correct these and then discuss the H α luminosity function at the faint end.

<u>Reference</u>

Villar et al. 2008, ApJ, 677ShD.Sobral et al. 2009, arXiv, 0901.4114v1Fi

Shioya et al. 2008, ApJS, 175 Fujita et al. 2003, ApJ, 586