Observations of Forming Galaxies at z>4 and Cosmic Reionization

I. Iwata (OAO, NAOJ), K. Ohta (Kyoto Univ.), M. Sawicki (St. Mary's Univ.), K. Yabe (Kyoto Univ.), A. K. Inoue (Osaka Sangyo Univ.)

Collaborators

- K. Ohta, K. Yabe (Kyoto)
- M. Sawicki (St. Mary's Univ., Canada)
- A. K. Inoue (Osaka Sangyo Univ.)
- N. Tamura, K. Aoki, H. Furusawa (NAOJ)
- M. Akiyama, Y. Matsuda, T. Yamada, T. Hayashino, K. Kousai (Tohoku Univ.)
- J.-M. Deharveng, D. Burgarella (LAM, France)

z~8.2 with 2m Telescope! GRB090423

OAO-ISLE J band

Yanagisawa, Yoshida, Kuroda et al. Okayama Astrophysical Observatory, NAOJ

•Observations of High-Redshift Star-forming Galaxies

Lyman Break Galaxies (LBGs)

Cosmic Reionization

Lyman Break Galaxies

Maraston05,25Myr,E(B-V)=0.1,z=4.8

Suprime-Cam

- Unique Instrument with 30' FoV + 8m Mirror
- LBG Searches with Subaru:
 - Subaru Deep Field
 - Subaru-XMM Deep Survey

Subaru Suprime-Cam z~5 LBG Search

⁵⁰⁸ arcmin²

781 arcmin²

Spectroscopic Follow-up of LBG Candidates

- Subaru / FOCAS: Ando et al. (2004, 2007)
- Gemini / GMOS-N and S (using Nod & Shuffle): Kajino et al. submitted to ApJ
- So Far 16 (North) + 7 (South) Objects Have Been Confirmed to be at z~5
- Color Selection Works Very Well

FOCAS Spectroscopy

Ando+ 2004 ApJ 610, 635

GMOS Spectroscopy

2D Nod-and-Shuffle Spectrum

学校的问题,我们的问题。

Kajino+ submitted to ApJ

UV Luminosity Function

UVLF: Constraints from Spectroscopy

UVLF: Constraints from Spectroscopy

Iwata+ 260, 111, 100, 100, 100, 100,

Yoshida+ 2006 ApJ 653, 988

Do We See the Same Population?

Filters Used by Us and Subaru Deep Field

Maraston05,25Myr,E(B-V)=0.1,z=4.8

M05/Salpeter/E(B-V)=0.0-0.8

Model: Maraston05, Const. SFR, Salpeter IMF, Z=0.5Zsun, age=25 Myr, Calzetti Dust, IGM Attenuation (Inoue+05)

Populations Covered by VIz Selection

Redshift

Populations Covered by VIz and Viz Selections

Populations Covered by VIz, Viz and BRi Selections

Bright-End of UVLF: Possible Explanation of Discrepancy?

Filters Used by Us and HST/ACS GOODS

Maraston05,25Myr,E(B-V)=0.1,z=4.8

M05/Salpeter/E(B-V)=0.0-0.8

 \times

2

X

4

М

 \sim

 $\overline{}$

0

 i_{775}

I

 V_{606}

 $I_c - z'$

 $i_{775} - z_{850}$

VI_cz' (Ours)

HST/ACS

Populations Covered by VIz and HST/ACS Selections

Redshift

Evolution of UV Luminosity Function

UV Abs Mag

Evolution of UV LF and Dark Matter Mass Function

Evolution of UV LF and Dark Matter Mass Function

Stellar Population Estimates from SED Fitting

- Spitzer / IRAC: Imaging in Rest-Frame Optical Wavelengths
 - GOODS (Legacy Survey) + Our Own Flanking Fields Observations

SED Fitting Using Rest-Frame UV to Optical Images

See Poster by Yabe et al. for Updates

Discrepancy in Stellar Mass Function

Are Observed Galaxies Able to Reionize the Universe?

Are Observed Galaxies Able to Reionize the Universe?

Bolton & Haehnelt 2007, MNRAS 382, 325

Parameters to Clarify Reionization Process

HII Clumping Factor C $\equiv \langle \rho^2 \rangle_{IGM} / \langle \rho \rangle^2$

UV Emissivity of Ionizing Sources

 F_{LC} / F_{UV} : Intrinsic Lyman Continuum / UV Flux Ratio

> fesc: Escape Fraction of Lyman Continumm from Galaxies Out to IGM

Escape Fraction of Lyman Continuum

 $F_{obs} = F_{int} \times f_{esc} \times e^{-\tau(IGM)}$

Detection of Lyman Continuum From Galaxies

- Lyman Continuum from Galaxies at z>5 is Virtually Invisible Due to Strong Intergalactic Absorption
- Observation at z<5 is Required

Inoue &I wata 2008, MN 387, 1681

Shapley+ 2006 ApJ 651, 688

- Detected ionizing radiation from two z~3 LBGs (L>L*), among 14 spectroscopically observed.
- Average escape fraction was suggested to be less than 10%

A New Trial with Subaru

• Special Narrow-Band Filter for Suprime-Cam

SSA22: Proto-Cluster at z=3.09

Please Refer Talk by Y. Matsuda

Detections of Lyman Continuum from 7 LBGs and 10 LAEs

Iwata+ 2009, ApJ 692, 1287

Escape Fraction of Lyman Continuum

- LBGs: fesc (median) = 4% 20% Depending of Assumptions on IGM Opacity and Intrinsic Lyman Continuum Luminosity
- LAEs: Unable to Explain Their Lyman Continuum Luminosity with Standard Stellar Population Models, Even If We Assume $f_{esc}=100\%$
 - Note: No Signature of AGN
- Follow-up Observations to Investigate Their Nature Are Required

High LyC Escape Fraction?

Summary

- High-redshift Star-forming Galaxies
 - Need of Careful Treatment in Comparison of Different Data Sets
 - Existence of Very Massive (>10¹⁰ Msun Stars) Galaxies at $z \ge 5$
 - High Efficiency at Higher Redshift
 - Numerous Dwarf Galaxies Beyond Current Detection Limit? or Massive Star Formation at z>10?
 - Are Observed Galaxies Sufficient for Reionization?
 - Large Uncertainties Both in Observations and Models
- Lyman Continuum Escape Fraction
 - Subaru / Suprime-Cam Wide-field Survey Detected Ionizing Photons at z~3
 - Surprisingly High Escape Fraction "Ionizers"?

Prospects for Future

- We Need More Photons!
 - Wide-Field Imager: Hyper Suprime-Cam
 - Larger Mirror: ELTs such as TMT
- Near-Infrared Observations
 - Space-Based Observations: JWST and WISH*
 - High Throughput Spectrograph in Near-Infrared for Subaru or Gemini?

*http://www.wishmission.org