Kyoto, May, 2009

<u>GMOS Spectroscopic Survey of</u> <u>z>1 SpARCS Galaxy Clusters</u>

Howard Yee University of Toronto and The SpARCS Survey collaboration

Outline:

- a brief summary of the SpARCS (Spitzer Adaptation of RCS) survey

GCLASS (Gemini Cluster Astrophysics Spectroscopic Survey)
 sample, observation technique

- preliminary GMOS spectroscopy results

Muzzin, et al. 2009, ApJ, in press (arXiv:0810.0005) Wilson, et al. 2009, ApJ, in press (arXiv:0810.0036)

The SpARCS/CGLASS project:

US co-PI: Adam Muzzin (Yale), **Gillian Wilson (UC Riverside)** Cdn co-PI: Howard Yee (U. of Toronto)

Ricardo DeMarco, UC Reiverside; Jonathan Gardner, GSFC; Jason Surace, Spitzer Science Center; Henk Hoekstra, Leiden Subha Majumdar, TIFR; Mike Balogh, U. Waterloo; Doughlas Burke, Chandra Sc. Cent.; Erica Ellingson, U. Colorado; Alexandro Rettura, JHU; **Renbin Yan, U. of Toronto**

David Gilbank, U. Waterloo Mark Lacy, Spitzer Science Center Mike Gladders, U. Chicago **Kris Blindert, MPIA** Shelley Bursik, U. Arkansas **Amalia Hicks; Michigan State** Tracy Webb, McGill U.

The search for high-redshift galaxy clusters:

- high-z (>~1) clusters provide a very significant lever-arm in the two major scientific motivations for galaxy cluster research:
- Growth of structures: the measurement of cosmological parameters.
 Evolution and formation of clusters and cluster galaxies.

Cluster survey methods:

Optical/IR
 X-ray
 Sunyeav-Zeldovich effect

Each has advantages and disadvantages, and its own problems in finding high-z clusters

Optical Search for Clusters

Optical/IR searches are observational inexpensive, but suffer from increasing projection contaminations at higher z

The Cluster Red-Sequence Method

Gladders & Yee 2000, AJ, 120, 2148

Uses the early-type (red) galaxies as markers for cluster detection to eliminate most of the projection contaminations

Color-magnitude relation of Ellipticals as a function of redshift

The RCS1 - 92 sq deg, CFHT 12k, CTIO mosaic-cam

(Gladders & Yee, 2000, 2005)

The RCS2 - 920 sq deg, CFHT Megacam (www.rcs2.org; Yee et al, 2007, astro-ph)

Cluster photo-z from the red-sequence

0.8

At Higher z:

- closer to formation time
 → larger evolutionary effects
- larger differences in N(m)
 between different
 cosmological models

The Search for z >1 Clusters

- the RCS technique is optimized when the 2 filters straddle the 4000A break
- requires IR images for z>-1.1
 - the cluster redshift "desert": 1.2<z<2

Color-magnitude relation of Ellipticals as a function of redshift

(Spitzer Adaptation of RCS)

- combine (public) Spitzer SWIRE 3.6µm data (50 sq deg) with deep ground-based z' band (-2hr integration)
- CFHT (8 nights) + CTIO (15 nights); 6 patches
 -- search for clusters to z-1.8
 -- expect -200 clusters with z>1

SpARCS fields: North (CFHT), 28.3 sq deg

South (CTIO), 13.6 sq deg

Chandra-S

Spectroscopically Confirmed High-z Clusters as of end of 2007

Most distant X-ray clusters	Most distant IR clusters
z = 1.45, XMMXCS J2215.9-1738	z = 1.41, ISCS J143809+3414
z = 1.39, XMMU J2235.3-2557	z = 1.34, SpARCS J0035.7-4312
z = 1.27, RDCS J0849+4452	z = 1.24, ISCS J1434.5+3427
z = 1.24, RDCS J1252.9-2927	z = 1.20, SpARCS J1638.8+4039
z = 1.22, XLSS J022303-043622	z = 1.18, SpARCS J1634.5+4021

Spitzer has nearly doubled the number of known distant clusters in just a few years!

The Gemini GMOS Survey of High-Redshift SpARCS Clusters

The anchor of a comprehensive mulit-wavelength program to study 10 rich hight-z SpARCS clusters (nine at z>1, one at z=0.9);

including:

- ~50 spectroscopic members per cluster
- multi-band opt/IR imaging
- MIPS, SCUBA2, radio imaging
- Chandra X-ray imaging
- HST imaging

Observation:

GMOS: band nod-&-Shuffle mode R150 grism, 1.74Å per pixel I" slit, giving a resolution of 17Å (-200km/s)

Each cluster: 4 masks, integration time: -3 hrs/mask; (4 hrs for the highest z) S/N- 3-4 per pixel (z'<22.5)

Total time (including N&S overhead, pre-imaging etc): 197 hrs, split equally Canada/USA Galaxy clusters at z>-1 are compact on the sky, with the core subtending -1-2 arcmin

3 arc min

→ can only place a limited number of slits in the region with the highest excess number of galaxies,

even with nod&shuffle

arc min (o.9Mpc

 ∞

3" micro-slits (1.5" on; 1.5" off) charges are shuffled and stored in the top and bottom 3rd (as oppose to storing immediately adjacent to the slits)

arc min (o.9Mpc

 ∞

typically 25 slits within the 1 Mpc core of the clusters; compared to standard mask design/N&S: 10-15 slits
able to obtain 20-30 member redshifts using 3 to 4 masks
factors of 2 to 3 more efficient (in comparison with similar VLT/Keck programs).

New strategy/ more efficient (own) mask design program for 09A: 50+ slits per mask

A 48 slit mask

 more efficient double-tiering by placing the center of the cluster to one side (and reverse the position for the next mask)

 own mask design program (Muzzin) to overcome inefficiencies in the Gemini-provided program: arbitrary number of priority bins (instead of max 3) tighter placements of slits more flexible placements/choices of alignment stars

SpARCS [63435+402]51`

 $z_{phot} = 1.25$

z = 1.1798 σ = 490 ± 140 km/s

 $M_{200} = 1.0^{+1.1}_{-0.6} \times 10^{14} M_{sun}$

17 spectroscopic members

SpARCS 163852+403843

 $z_{phot} = 1.3$

28 spectroscopic members z = 1.1963 $\sigma = 650 \pm 150$ km/s

$$M_{200}=2.4^{+2.2}_{-1.4}\times10^{14}M_{sun}$$

SpARCS 003550-431124

Summary:

- The extension of the optical red-sequence method to the IR is a powerful technique in discovering galaxy clusters at z>1, and potentially to z-2.
- Gemini GMOS with the band Nod-&-Shuffle technique provides arguably the most efficient combination for multi-object spectroscopy of high-redshift clusters; allowing an useful number of cluster member redshifts to be obtained in a reasonable time
- spectroscopic confirmation of SpARCS high-z clusters: so far 100% confirmation; dynamical mass consistent with richness; well-established red-sequence galaxies