

Herzberg Institute of Astrophysics

From Gl229B to HR8799bcd: 15 years of dírect exoplanet imaging research

Christian Marois

Herzberg Institute of Astrophysics

Kyoto, Japan May 2009

National Research Council Canada Conseil national de recherches Canada

From Gl229B to HR8799bcd: 15 years of dírect exoplanet ímaging research

Christian Marois

Herzberg Institute of Astrophysics

Kyoto, Japan May 2009

National Research Council Canada Conseil national de recherches Canada

Stars vs Brown Dwarfs vs Planets

The challenge

Everest mount (10km)

Jupiter: basketball

Earth: ant

GI229B

Brown Dwarf Gliese 229B

PRC95-48 · ST Scl OPO · November 29, 1995 · T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

PRC95-48 · ST Sci OPO · November 29, 1995 · T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Star Forming Region

5-15 MJup

Free-floating in star forming regions?

ng Region

 $\mathbf{)}\mathbf{0}$

5-15 MJup

Free-floating in star forming regions?

2MASS

2MASS J1146+2230

An L-type dwarf in the constellation Leo

The near-infrared view

2MASS Atlas JHK_s Composite Image

The optical view

Palomar Digitized Sky Survey

J.D. Kirkpatrick (IPAC/Caltech), I.N. Reid (Caltech), R.M. Cutri (IPAC/Caltech), C.A. Beichman (IPAC/JPL/Caltech), J. Liebert (U of A), M.F. Skrutskie (UMass)

The 2MASS project is a collaboration between the University of Massachusetts and IPAC

Free-floating in space?

What is an exoplanet?

- Less than 13.6 Jupiter mass (13.6-75MJup = brown dwarfs)
- In orbit around a star
- Form in a disk (?)

• Initial formation energy, than cool down with time. "hot start model" "core accretion model"

Designing a Direct Imaging Exoplanet Survey

• Need to be able to resolve the system

• Need to be able to see the planets before they cool down

Find nearby & young stars

Palomar AO Survey

PRC95-48 • ST Scl OPO • November 29, 1995 • T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Ben Oppenheimer et al.: < 8pc survey (163 stars)

Stan Metchev et al.: 266 stars 3Myr-3Gyr at Palomar & Keck - BD statistics 28-1590AU 3.2% [+3.1-2.7]

Young star HST survey

2MI207b

116 nearby young stars - NICMOS 2 coronagraph Inseok Song et al.

Keck AO survey

Kaisler, Macintosh, Zuckerman, Song et al. M. Liu Stan Metchev

VLT/Arizona AO survey

GQ Lupi

Laird Close/R. Lenzen SDI-camera 60 stars survey (B. Billers) Nielson 20-100AU >4MJup <20%

Chauvin et al. Neuhauser et al

Phil Henz Clio L-band IR camera <6pc survey

Subaru AO survey

A Young Brown Dwarf Companion to DH Tauri Subaru Telescope, National Astronomical Observatory of Japan Copyright ©2005 National Astronomical Observatory of Japan. All rights reserved.

> Nakajima < 20 pc survey Motohide Tamura TTauri star survey

Gemini AO survey

Altair commissioning ~2003

Altair@Gemini N

David Lafreniere: GDPS (2004-2007) 86 GKM stars <300 Myr

Christian Marois: IDPS (2007-now) ~100 AF stars <300 Myr & some dusty AF stars

David Lafreniere: Young star associations

Markus Janson: ~10 OB stars

Our Gemini Survey History

- 2002: ADI initial idea
- 2003: Initial ADI testing at Gemini North (Altair SV).
- 2004-2007: 86 GKM stars ADI survey at Gemini North no detection (Lafreniere et al. 2007).
- 2007-now: 80 AF stars ADI survey (Gemini North, Keck II & VLT).
- 2007-now: Young star association (Lafreniere)

Subtraction

+

Conseil national National de recherches Canada Council

National Research Council Canada

Conseil national Nation de recherches Canada Counc

National Research Council Canada

ADI gain

The GDPS ADI Survey

The GDPS ADI Survey

No detection
The IDPS survey

Remove the late type bias

Focus on young & close AF-type stars + some dusty

Combine the Gemini N, Keck and VLT

HR 8799 Characteristics

Lambda Boo, Gamma Dor and Vega-like star (disk ~90AU)

HR 8799 Characteristics

Lambda Boo, Gamma Dor and Vega-like star (disk ~90AU)

HR 8799 Characteristics

Lambda Boo, Gamma Dor and Vega-like star (disk ~90AU)

The Initial Discovery (March 2008)

October 2007

The Initial Discovery (March 2008)

NRC Canada

Gemini North

The Initial Discovery (March 2008)

October 2007

A third planet!

A third planet!

September 2008

NRC

A system not that easy to see...

Gemini N, Altair/NIRI & 10s K-band

A system not that easy to see...

Gemini N, Altair/NIRI & 10s K-band

ADI processing

Voyager I (43 AU) I8 cm diameter

Keck 2 (130 ly), 10m diameter

Voyager I (43 AU) 18 cm diameter

Keck 2 (130 ly), 10m diameter

Voyager I (43 AU) I8 cm diameter

Keck 2 (130 ly), 10m diameter

Keck 2004 old data

Add 4 more years of orbital motion!

Multi-band photometry @ Keck

HR 8799 age?

Multi-band photometry @ Keck

HR 8799 age?

HR 8799 Age Estimation

• ¿ Low in the HR diagram, under Pleiades.

• Galactic Space motion consistent with being young - between TW Hya and Pleiades

• Lambda Boo & Gamma Dor stars generally considered young.

• Massive debris disk - lower probability at older ages.

• Isolated field star.

HR 8799 age = 30-160 Myr

HR 8799 Age Estimation

HR 8799 age = 30-160 Myr

HR 8799 Age Estimation

• ¿ Low in the HR diagram, under Pleiades.

• Galactic Space motion consistent with being young - between TW Hya and Pleiades

• Lambda Boo & Gamma Dor stars generally considered young.

• Massive debris disk - lower probability at older ages.

• Isolated field star.

HR 8799 age = 30-160 Myr

Mass, radius & Teff estimations from cooling tracks

The 3 planet's colors are more consistent with Pleiades low mass ~IIMJup objects and 2MI207b than field BDs.

Physics untested - No corresponding objects in the field.

Planetary System Formation

Solar system

one theory of how gas-giant planets form loonrunner Design

TWO PLANET FORMATION SCENARIOS

Accretion model

Orbiting dust grains accrete into "planetesimals" through nongravitational forces.

Planetesimals grow, moving in near-coplanar orbits, to form "planetary embryos."

Gas-giant planets accrete gas envelopes before disk gas disappears.

Gas-giant planets scatter or accrete remaining planetesimals and embryos.

Gas-collapse model

A protoplanetary disk of gas and dust forms around a young star.

Gravitational disk instabilities form a clump of gas that becomes a self-gravitating planet.

Dust grains coagulate and sediment to the center of the protoplanet, forming a core.

The planet sweeps out a wide gap as it continues to feed on gas in the disk.

HR 8799 Planetary System Probably formed in a disk

HR 8799bcd Characteristics

HR 8799	Separation (AU)	Period (years)	Temperature (K)	Radius (RJup)	Mass (MJup)
b	68	~460	820	1.30	7
С	38	~ 90	1000	I.25	10
d	25	~100	1000	1.20	10

60 Myr

Circular face-on

E. Becklin 1998 HST data

Lefreniere et al. 2009

~IOx better PSF subtraction!

New 1998 epoch!

Lefreniere et al. 2009, submitted

FI60W point consistent with water bands!

2nd HST paper in prep.

Lefreniere et al. 2009

2nd HST paper in prep.

Lefreniere et al. 2009

Marois et al., in prep.

Finalizing the current AO survey (2010)

Nearly 100 massive stars have been observed

- 79 candidates (3 real!)
- Increasing the survey to 250 stars (250h for 2009B)
- Now with NICI, NIRI, Nirc2 & Conica

Finalizing the current AO survey (2010)

IRXS J160929.1-210524

330 AU & 8 MJup

Bound?
NICI@Gemini S

50 nights survey in 2-3 years PI: M. Liu & L. Close

GPI@Gemini S/N

Conseil national de recherches Canada

National Research Council Canada

0.5 orcsec 20 AU • Direct exoplanet imaging - active on all 8-10m class telescopes equipped with an AO system (Gemini, Subaru, Keck, MMT & VLT).

• Gemini played a very important role in this field:

- Development of a key observing strategy (ADI)
- Lead one of the most complete imaging survey (GDPS)
- Ongoing 2nd generation survey aimed at young/close more massive stars (IDPS)
- Ongoing NICI survey
- 2nd generation dedicated instrumentations: GPI (2011)

• Semini commitment lead to the HR 8799 discovery, the first directly image multi-planet system. First at separations similar to the outer planets of our solar system + detected Keplerian orbital motion.

More to come...

Conclusions

• Direct exoplanet imaging - active on all 8-10m class telescopes equipped with an AO system (Gemini, Subaru, Keck, MMT & VLT).

Gemini played a very important role in this field:
 Development of a key observing strategy (ADI)
 Lead one of the most complete imaging survey (GDPS)
 Ongoing 2nd generation survey aimed at young/close more massive stars (IDPS)

- Ongoing NICI survey
- 2nd generation dedicated instrumentations: GPI (2011)

• & Gemini commitment lead to the HR 8799 discovery, the first directly image multi-planet system. First at separations similar to the outer planets of our solar system + detected Keplerian orbital motion.

More to come...

National Research a Council Canada

Fonds de recherche

sur la nature et les technologies

Science at work for Canada

National Research Council Canada Conseil national de recherches Canada

National Research Council Canada Conseil national de recherches Canada

Dynamic Analysis

Younger age / model over predict mass / 4:2:1 resonance

Do cooling tracks overestimate the mass?

Dupuy et al. 2008

Gozdziewski & Migaszewski 2009

4:2:1 resonance could be unstable in 400Myr

Planet d would be ejected from the system

TABLE 1. Obs	served properties	of the directly i	maged planet c	andidates.	
Object	Luminosity	Magnitude	Temperature	Age	References
name	$\log(L_{ m bol}/L_{\odot})$	M _K [mag]	T _{eff} [K]	[Myrs]	
R	eference object (eSB2 brown dw	arf - brown dwa	arf binary 21	M0535):
2M0535 A	-1.65 ± 0.07	5.29 ± 0.16	2715 ± 100	1 (0-3)	Stassun 2007
В	-1.83 ± 0.07	5.29 ± 0.16	2820 ± 105	1 (0-3)	Stassun 2007
	D	irectly detected	planet candidat	es:	
DH Tau b	-2.44		2750 ± 50	10	Itoh 2005
	-2.75 ± 0.10	8.31 ± 0.23		0.1-4	[17], [22]
GQ Lup b	-2.38 ± 0.25	7.67 ± 0.16	2650 ± 100	1-3	Neuh. 05, [32], [34]
2M1207 A	-2.76 ± 0.05	8.35 ± 0.05	2425 ± 160	5-12	Chauvin 05a, [11]
b	-4.75 ± 0.06	13.33 ± 0.12	1590 ± 280	5-12	[7], [16], [26], [31]
AB Pic b	-3.76 ± 0.06	10.85 ± 0.11	2040 ± 160	20-40	Chauvin 05b, [31]
Oph 1622 a	-2.61 ± 0.23	7.96 ± 0.56		5 (1-20)	Allers 2006, [2]
Oph 1622 b	-2.79 ± 0.23	8.42 ± 0.56		5 (1-20)	[8], [15]. [18]. [24]
SCR 1845 b	$M_{\rm H} = 15.30$ -	+0.31 - 0.26	(850)	100-10 ⁴	Biller 2006
CHXR 73 b	-2.62 ± 0.21	8.00 ± 0.52	2600 ± 450	0.1-4	Luhman 2006, [33]
HD 203030 b	-4.69 ± 0.07	13.15 ± 0.14	late L	130-400	Metchev 2006
HN Peg b	-4.94 ± 0.04	13.80 ± 0.05	early T	100-500 Luhman 2007	
USco 108 b	-3.14 ± 0.14	9.30 ± 0.34	(2350)	5 (1-10)	Béjar 2008
CT Cha b	-2.68 ± 0.21	8.83 ± 0.50	2600 ± 250	0.1-4	Schmidt 2008
1RXSJ1609 b	-3.57 ± 0.15	10.36 ± 0.35	early L	5 (1-10)	Lafrenière 2008
Fomalhaut b	≤ -6.5	$M_{\rm H} \ge 23.5$	100-300 Kalas 2008		Kalas 2008
HR 8799 b	-5.1 ± 0.1	14.05 ± 0.08		20-1128	Marois 2008
с	-4.7 ± 0.1	13.13 ± 0.08		20-1128	[14]
d	-4.7 ± 0.1	13.11 ± 0.12		20-1128	[35]
β Pic b	$M_{L'} = 9.7$	77 ± 0.30		8-20	Lagrange 2009
FU Tau b	-2.40 ± 0.09	7.44 ± 0.20	0.1-4 Luhman 2009		
EK 60 b	-3.14 ± 0.18	9.28 ± 0.44		0.3-10	Kuzuhara (in prep.)

Object	Burrows 97	Chabrier 00	Baraffe 03	Marley 07 $(\leq 10 \text{ Jup})$	Baraffe 08 $(> 10 \text{ Myrs})$	Wuchterl (Neuh05)
name	(L,age)	(L, MK, age)	(L, MK, age)	(<u>≤ 10 Jup</u>)	(<u>></u> 10 My13)	(Inculios)
	Reference obje	ct (eSB2 brown	n dwarf - brown	dwarf binary	2M0335):	
2M0535 A	50 (45-60)	55 (30-60)	50 (45-80)			5-13
В	37 (33-46)	45 (40-50)	43 (40-65)			≤ 13
		Directly dete	cted planet cand	didates:		
DH Tau b	14 (12-19)	11 (10-20)	10 (7-20)			5
GQ Lup b	19 (16-30)	22 (12-30)	17 (12-32)			1-5
2M1207 A	18 (18-19)	20 (17-23)	19 (15-21)			1-5
b	4 (3-5)	4 (2-5)	3 (1-4)	4 (3-5)	4	
AB Pic b	13.5 (13-14)	15 (11-20)	13 (11-20)			
Oph 1622 a	20 (14-55)	20 (10-40)	20 (9-40)			
Oph 1622 b	18 (10-40)	17 (7-25)	17 (7-23)			
SCR 1845 b		11.5-65	9-65			
CHXR 73 b	17 (12-23)	13 (10-25)	12 (8-25)			2-5
HD 203030 b	17 (12.5-30)	≤ 30	18 (11-30)			
HN Peg b	17 (11.5-25)	17 (10-25)	17 (10-23)	≥ 10		
USco 108 b	14 (7-17)	13.5 (5-17)	12 (5-18)			1-2
CT Cha b	17 (11-23)	13 (8-25)	12 (6-30)			2-5
1RXSJ1609 b	9.5 (4-14)	8 (3-13)	8 (3-12)	8 (≥4)		
Fomalhaut b	≤ 4		≤ 3	≤ 3	≤ 2	
HR 8799 b	8 (4-36)	≤ 35	6 (4-38)	7 (≥ 3)	7 (≥3)	
с	12 (6-50)	10 (6-46)	9 (6-48)	10 (≥ 6)	≥ 5	
d	12 (6-50)	10 (6-46)	9 (6-48)	10 (≥ 6)	≥ 5	
β Pic b		7.5 (6-10)	9 (6-12)			
FU Tau b	18 (≤ 25)	20 (15-28)	17 (14-30)			
EK 60 b	14 (6-17)	13.5 (5-17)	12.5 (5-17)	≥ 5		

Schmidt et al. 2009

Fortney et al. 2009

At I Gyr, b = 30 MJup and c/d = 40 MJup

But problematic...

- Inconsistent with several age indicators.
- At that age (IGyr), models are though to be accurate no matter how they have formed.
- Stability models have problems with 7-10 MJup for 60 Myr - pointing the other way around that masses are probably equal or lower than our estimate.
- Probably impossible to have a stable I Gyr system that compact for that massive companions.

Very unlikely that the system is that old