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Abstract. The central engine of gamma-ray bursts (GRBs) is believed to be a hot and dense disk with
hyperaccretion onto a stellar mass black hole. We investigate where the magnetorotational instability
(MRI) actively operates in hyperaccretion disks. The inner region of hyperaccretion disks can be neutrino
opaque,and the energy- and momentum-transport by neutrinos could affect the growth of the MRI
significantly. Assuming reasonable disk models and a weak magnetic field B � 1014 G, it is found that
the MRI is strongly suppressed by the neutrino viscosity in the inner region of hyperaccretion disks. In
contrast, the MRI can drive active MHD turbulence in the outer neutrino-transparent region regardless
of the field strength. This suggests that the baryonic matter is accumulated into the inner dead zone
where the MRI grows inactively and the angular momentum transport is inefficient. When the dead
zone gains a large amount of mass and becomes gravitationally unstable, the intense mass accretion
would occur episodically through the gravitational torque. This process can be a physical origin of the
short-term variability in the prompt emission of GRBs.

1. Introduction

Gamma-ray bursts (GRBs) are generally considered to be powered by the hyperaccretion onto a
stellar-mass black hole (∼ 3M�), which is formed in the context of the “collapsar” scenario or merging
scenarios of compact objects (Woosley 1993; MacFadyen & Woosley 1999). The hyperaccretion rate is of
the order of 0.1–1M� sec−1 and the release of the gravitational energy powers the burst. The radiative
energy ejected through relativistic jets is expected to account for the observed γ-ray emission.

The key process for releasing the gravitational energy is the angular momentum transport in the
disk. As in the cases of the other astrophysical disks, magnetic turbulence initiated and sustained by
the magnetorotational instability (MRI) is believed to play an essential role for the angular momentum
transport in hyperaccretion disks (Balbus & Hawley 1991). Detailed linear and nonlinear analyses of the
MRI facilitate us to understand the role of MRI in various disk systems (Turner et al. 2002; De Villiers
et al. 2003). However, the physical conditions in hyperaccretion disks are quite different from the other
systems. Because the hyperaccretion disk is very dense and hot like supernova cores, it can be cooled
through the neutrino radiation (Popham et al. 1999; Di Matteo et al. 2002). In addition, the energy
and momentum are mainly transported by neutrinos in the neutrino-opaque region.

Masada et al. (2007; hereafter MSS07) have investigated the effects of the neutrino transport on
the MRI in proto-neutron stars, and show that the heat, chemical, and viscous diffusions caused by the
neutrino transport have great impacts on the MRI. The heat and chemical diffusions can reduce the effect
of stratifications, and the neutrino viscosity suppresses the growth of the MRI. The hyperaccretion disk
is considered to have similar properties to it. In particular, neutrinos can be trapped in the inner dense
region of hyeraccretion disks and the energy and momentum are mainly transported by the neutrino.
We can, thus, apply the results of MSS07 to hyperaccretion disks with little changes.

The growth time of the MRI in the absence of the viscosity is given by λ/vA, where λ is the
wavelength of a perturbation and vA = B/(4πρ)1/2 is the Alfvén speed. MSS07 have shown that the
growth of the MRI is suppressed if the growth time is longer than the viscous damping time ∼ λ2/ν,
where ν is the kinematic viscosity. Then, a large enough viscosity can reduce the linear growth of the
MRI. As the wavelength becomes longer, the larger size of the viscosity is required to suppress the MRI.
Because the typical wavelength of the MRI is λ ∼ vA/Ω, the condition for the linear growth is given by

Re ≡ LU

ν
=
v2
A

νΩ
> 1 , (1)

where Re is the Reynolds number, and Ω is the angular velocity. Here we choose vA/Ω as the typical
length scale L and vA as the typical velocity U . The Reynolds number is a good indicator for the fast
growth of the MRI in hyperaccretion disks. In dense neutrino-opaque matters, the kinematic viscosity
via the neutrino transport would be large, so that the condition (1) may not be satisfied. In this paper,
we investigate where the MRI operates in hyperaccretion disks focusing on the effects of the neutrino
viscosity on the growth of the MRI.
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2. The Structure of Hyperaccretion Disks

We adopt basic equations based on the Newtonian dynamics and assume a quasi-steady structure of
hyperaccretion disks. Various disk models have been proposed as the central engine of GRBs (Popham et
al.1999; Di Matteo et al.2002 ), in which the α-prescription of turbulent viscosity is addopted (Shakura &
Sunyaev 1973). However, we now have an interest with the features of MRI which can initiate and sustain
the turbulent viscosity. It is, thus, necessary to construct disk models independent of the α-parameter.
For simplicity, we adopt power-law models for the radial distributions of all physical quantities.

The surface density Σ(r) is one of the most important quantities in constructing the disk structure.
We assume a power-law distribution with an index q,

Σ(r) = Σ0r̂
−q , (2)

where r̂ = r/rs is the distance from the central black hole normalized by the Schwarzschild radius. The
Schwarzschild radius is given by rs = 2GMBH/c

2 = 8.9 × 105M3 cm, where M3 = MBH/(3M�) is a
mass of black hole normalized by 3 M�. Here Σ0 is a reference value of the surface density at r = rs,
and is choosen as Σ0 = 1.0× 1018fΣ g cm−2, where fΣ is an arbitrary parameter. Another key quantity
is the temperature, which is assumed to retain a power-law distribution with an index p,

T (r) = T0r̂
−p , (3)

where T0 is a reference value and is given by T0 = 4.3× 1011fT K. Here fT is arbitrary parameter.
Assuming the gas pressure dominated disk, the sound speed is given by

cs = (kBT/mp)1/2 = 6.1× 109f
1/2
T r̂−p/2 cm sec−1 , (4)

where kB is the Boltzmann constant and mp is the proton mass. In a gravitationally stable disk, the
vertical component of the gravity in the disk is contributed by the central black hole. The hydrostatic
equilibrium in the vertical direction determines the scale height of the disk,

H = cs/Ω = 2.5× 105f
1/2
T M3r̂

−(p−3)/2 cm , (5)

where the disk is assumed to rotate with the Keplerian angular velocity, Ω = ΩK = 2.4×104M−1
3 r̂−3/2 sec−1.

Then the density structure can be evaluated from the relation ρ = Σ/(2H). Using these quantities, the
radial profile of the neutrino depth is given by τtot = 1.3×103fΣf

2
T r̂
−2p−q. Here we assume that both ab-

sorption and scattering processes of the neutrino contribute to the neutrino depth (Burrows & Lattimer
1986). In the neutrino-opaque region, we can obtain the neutrino viscosity;

ν = 8.1× 1010f−2
Σ f3

TM
−1
3 r̂3(1−p)+2q cm2 sec−1 . (6)

The strength of the magnetic field is also an important quantity to investigate where the MRI
operates in hyperaccretion disks. It is assumed that the pre-collapse core has a magnetic field with
Bp ≈ 109 G. With the conservation of the magnetic flux during the collapse, the radial structure of the
magnetic field immediate after core-collapse can be estimated as

Bp,disk ' 1.0× 1011f
2/3
Σ f

−1/3
T fBM

−3/2
3 r̂(p−2q−3)/3 G , (7)

where fB is the arbitrary magnetic parameter. The Alfvén speed in the disk is then given by

vA = 2.0× 104f
1/6
Σ f

−1/12
T fBM

−1/6
3 r̂(p−2q−3)/12 cm sec−1 . (8)

The power-law indexes of the surface density and temperature are determined by the thermal
equilibrium in the disk. Considering that the advection cooling dominates the other cooling processes,
the power-law indexes are given by p = 1.0 and q = 0.5 (Di Matteo et al. 2002). This corresponds to
the ADAF (advection dominated accretion flow) type disk. In the following, we investigate where the
MRI operates in ADAF-type hyperaccretion disks as an example.

3. Linear Growth of MRI in Hyperaccretion Disks

MSS07 derive the dispersion equation for the MRI including the effects of neutrino transport. We
apply it to find out the most unstable modes of the MRI in hyperaccretion disks. The effects of the
stratification due to the thermal and leptonic gradients can be ignored for this case. We focus on the
linear growth rate of the axisymmetric MRI. This is because the axisymmetric mode is the fastest growing
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mode of the MRI, and the toroidal component of the field does not affect the linear and nonlinear growth
of the MRI if the field strength is subthermal (Sano & Stone 2002).

Assuming a uniform vertical field and considering only the damping effect of the neutrino viscosity,
the dispersion equation of MSS07 is then written as

γ4 + 2νk2γ3 + [ν2k4 + 2(kzvA)2 + κ2]γ2 + 2νk2(kzvA)2γ + (kzvA)2[(kzvA)2 − 4Ω2] = 0 , (9)

where γ is the growth rate, κ is the epicyclic frequency, ν is the neutrino viscosity, and k = (k2
r+k2

z)1/2 is
the wavenumber. Radial and vertical wavenumbers are described by kr and kz. We solve the dispersion
equation (9) numerically and show the maximum growth rate of the MRI in hyperaccretion disks.

Figure 1 shows the maximum growth rate of the MRI as a function of the radius for the cases with
different magnetic parameters fB = 1, 10, 102 and 103. The vertical and horizontal axes are normalized
by ΩK and rs. The parameters fΣ and fT are assumed to be unity. The critical radius dividing the
neutrino-opaque and neutrino-transparent region locates at rcrit ∼ 20rs.

It is found from this figure that the maximum growth rate of the MRI in the neutrino-opaque region
is much smaller than that in the neutrino-transparent region if the magnetic parameter fB is smaller
than 103. That is, the MRI is strongly suppressed by the neutrino viscosity when the magnetic field
is weaker than the critical value, Bcrit ≈ 1014 G. Turbulent motions at the nonlinear stage cannot be
sustained when the growth rate of the MRI is much less than the angular velocity Ω (Sano et al. 2004).
In contrast, MHD turbulence driven by the MRI can grow actively in the neutrino-transparent region
regardless of the field strength, because the viscosity effect can beneglected there.

Figure 1. Maximum growth rate of the MRI as a function of the radius for the cases with different
parameters fB = 1, 10, 102, and 103. Other parameters are fixed to be unitiy, fΣ = fT = 1.

4. Episodic Accretion Model for GRBs

As is described in previous section, the MRI is suppressed by the neutrino viscosity in the neutrino-
opaque region when the magnetic field is weaker than the critical value, Bcrit ≈ 1014G. In contrast, the
neutrino-transparent region is unstable for the MRI and its growth rate is of the order of the angular
velocity. In what follows, we indicate that the dead zone formation could cause episodic hyperaccretion,
which can be the origin of the short-term variability in the prompt emission of GRBs.

We focus on the collapsar disk of mass 1–2M� expected as the central engine of long GRBs and
consider the relatively large dead zone (rcrit ∼ 20rs) formed in its inner part. In such the case, the angular
momentum transport in the dead zone would be taken by the neutrino viscosity itself (αν ∼ 10−4). Thus
the mass accretion rate onto the central black hole is given by Ṁout ' 10−4Ṁ�. Here Ṁ� is the mass
accretion rate of 1M� sec−1. On the other hand, in the outer neutrino-transparent region, the angular
momentum transport is taken by the turbulent viscosity sustained by the MRI (αt ∼ 10−2). Therefore
the mass inflow rate into the dead zone is given by Ṁin ' 10−2Ṁ�. Then the baryonic matter is
accumulated into the dead zone as time passes. The mass accumulation rate into the dead zone Ṁaccu

is almost identical to the mass inflow rate (Maccu ≈Min ).
If the baryonic matter is accumulated continuously into the dead zone, it becomes gravitationally

unstable at some evolutionary stage and the intense mass accretion of Ṁg ' 0.35Ṁ� is triggered due
to the gravitational torque. The duration of the intense accretion phase should be comparable to the
viscous timescale in the dead zone (Armitage et al.2001);

τg = r2/ν =' 0.93 f−1
T M3(αg/0.05)(r/20rs)3/2 sec , (10)
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Figure 2. Schematic picture of typical three evolutionary stages of a collapsar disk with a dead zone.
Fig(a) shows the mass accumulation stage. The intense accretion stage is represented in Fig(b). Stages
(a) and (b) continue episodically until the baryonic matter of the outer region is depleted [Fig(c) ]

where αg is the alpha-parameter in the gravitationally unstable region and is choosen as 0.05 here. In
addition, the gravitational energy released in this phase is Eg ' ηṀgτgc

2 ' 2.4× 1053(η/0.42) erg.
After the intense mass accretion phase, the dead zone returns to a gravitationally stable state

because of the decrease of the mass in the dead zone region. However, the mass accretion from the
outer active region to the dead zone continues constantly. The quiescent disk progressively evolves to
the intense accretion phase again. This cycle would be repeated and the explosive energy release occurs
intermittently until the material in the outer active region is exhausted (Fig.2(a),(b)). Finally, the dead
zone disk with a low mass accretion rate would be left after the episodic accretion stage (Fig.2(c)).

If the episodic accretion is the origin of multiple relativistic shells, the typical variable timescale
τvar in the prompt emission of GRBs should corresponds to the duration of an intense accretion phase;

τvar ' τg ' 0.93 sec , (11)

This could be the origin of the observable log-normal feature of the short-term variability in the prompt
emission (Nakar & Piran 2002). When a few percent of the gravitational energy is converted to the
radiative one, the typical peak luminosity of a variable component is evaluated as

Lvar ' f(Eg/τvar) ' 2.6× 1051(f/0.01) erg sec−1 , (12)

where f is the conversion factor from the gravitational energy to the radiative one. These are almost
identical to the observed timescale and peak luminosity of variable components in the prompt burst.

The episodic accretion is terminated when the material in the outer active region is exhausted. Then
the total duration of the prompt burst is determined by the mass depletion time. Applying the mass
inflow rate from outer active region, the total duration and luminosity of the prompt burst is evaluated,

τtot 'Mtot/Ṁin ' O(10) sec , Ltot ' f(ηMtotc
2)/τtot ' O(1051) erg sec−1 , (13)

where Mtot is the total mass of the accretion disk and is assumed as 1–2M� here. Thus our episodic
accretion model can explain many observed features of long GRBs quantitatively.
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